

Midterm 1 is next Wednesday

- ♦ Today's lecture will not be covered by the midterm.
- ♦ Next Monday, review class.
- Old exams and review questions on webpage.
- ♦ No recitation sections next week.
- ♦ New office hours next week, watch newsgroup for details.

Plans

Where we've been:

- ♦ Inductive definitions
 - abstract syntax
 - inference rules
- Proofs by structural induction
- Operational semantics
- ♦ The lambda-calculus
- Typing rules and type soundness

Plans

Where we've been:

- ♦ Inductive definitions
 - abstract syntax
 - inference rules
- Proofs by structural induction
- Operational semantics
- ♦ The lambda-calculus
- Typing rules and type soundness

Where we're going:

- "Simple types" for the lambda-calculus
- Formalizing more features of real-world languages (records, datatypes, references, exceptions, etc.)
- Subtyping
- Objects

Lambda-calculus with booleans

t ::=		terms
	x	variable
	λ x.t	abstraction
	t t	application
	true	constant true
	false	$constant \ false$
	if t then t else t	conditional
v ::=		values
	$\lambda x.t$	abstraction value
	true	true value
		false value

CIS 500, 6 October

CIS 500, 6 October

Typing Derivations

What derivations justify the following typing statements?

- ♦ \vdash (λ x:Bool.x) true : Bool
- ♦ f:Bool \rightarrow Bool \vdash f (if false then true else false) : Bool
- ♦ f:Bool \rightarrow Bool $\vdash \lambda$ x:Bool. f (if x then false else x) : Bool \rightarrow Bool

Properties of λ_{\rightarrow}

As before, the fundamental property of the type system we have just defined is soundness with respect to the operational semantics.

Properties of λ_{\rightarrow}

As before, the fundamental property of the type system we have just defined is soundness with respect to the operational semantics.

1. Progress: A closed, well-typed term is not stuck

If $\vdash t : T$, then either t is a value or else $t \longrightarrow t'$ for some t'.

2. Preservation: Types are preserved by one-step evaluation

If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

Proving progress

Same steps as before...

Proving progress

Same steps as before...

- ♦ inversion lemma for typing relation
- ♦ canonical forms lemma
- ♦ progress theorem

Typing rules again (for reference)

$\Gamma \vdash \texttt{true} : \texttt{Bool}$	(T-TRUE)	
$\Gamma \vdash \texttt{false} : \texttt{Bool}$	(T-FALSE)	
$\frac{\Gamma \vdash t_1 : \text{Bool} \Gamma \vdash t_2 : T \Gamma \vdash t_3 : T}{}$	$(T_{-}I_{F})$	
$\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \text{ : } T$	then t_2 else t_3 : T	
$x:T \in \Gamma$	(T-VAR)	
$\Gamma \vdash_{\mathrm{X}}$: T		
$\Gamma, x:T_1 \vdash t_2 : T_2$		
$\Gamma \vdash \lambda x: \mathtt{T}_1 . \mathtt{t}_2 : \mathtt{T}_1 \rightarrow \mathtt{T}_2$	(1-1105)	
$\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \qquad \Gamma \vdash t_2 : T_{11}$		
$\Gamma \vdash t_1 t_2 : T_{12}$	(I-APP)	

CIS 500, 6 October

- 1. If $\Gamma \vdash \text{true} : \mathbb{R}$, then $\mathbb{R} = \text{Bool}$.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash \text{if } t_1$ then t_2 else $t_3 : \mathbb{R}$, then $\Gamma \vdash t_1 : \text{Bool and}$ $\Gamma \vdash t_2, t_3 : \mathbb{R}$.

- 1. If $\Gamma \vdash \text{true} : \mathbb{R}$, then $\mathbb{R} = \text{Bool}$.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash \text{if } t_1$ then t_2 else $t_3 : \mathbb{R}$, then $\Gamma \vdash t_1 : \text{Bool and}$ $\Gamma \vdash t_2, t_3 : \mathbb{R}$.
- 4. If $\Gamma \vdash \mathbf{x} : \mathbf{R}$, then

- 1. If $\Gamma \vdash \text{true} : \mathbb{R}$, then $\mathbb{R} = \text{Bool}$.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash \text{if } t_1$ then t_2 else $t_3 : \mathbb{R}$, then $\Gamma \vdash t_1 :$ Bool and $\Gamma \vdash t_2, t_3 : \mathbb{R}$.
- 4. If $\Gamma \vdash \mathbf{x} : \mathbf{R}$, then $\mathbf{x} : \mathbf{R} \in \Gamma$.

- 1. If $\Gamma \vdash \text{true} : \mathbb{R}$, then $\mathbb{R} = \text{Bool}$.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash \text{if } t_1$ then t_2 else $t_3 : \mathbb{R}$, then $\Gamma \vdash t_1 :$ Bool and $\Gamma \vdash t_2, t_3 : \mathbb{R}$.
- 4. If $\Gamma \vdash \mathbf{x} : \mathbf{R}$, then $\mathbf{x} : \mathbf{R} \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1 . t_2 : R$, then

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash \text{if } t_1$ then t_2 else $t_3 : \mathbb{R}$, then $\Gamma \vdash t_1 :$ Bool and $\Gamma \vdash t_2, t_3 : \mathbb{R}$.
- 4. If $\Gamma \vdash \mathbf{x} : \mathbf{R}$, then $\mathbf{x} : \mathbf{R} \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with Γ , $x: T_1 \vdash t_2 : R_2$.

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash \text{if } t_1$ then t_2 else $t_3 : \mathbb{R}$, then $\Gamma \vdash t_1 :$ Bool and $\Gamma \vdash t_2, t_3 : \mathbb{R}$.
- 4. If $\Gamma \vdash \mathbf{x} : \mathbf{R}$, then $\mathbf{x} : \mathbf{R} \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with Γ , $x: T_1 \vdash t_2 : R_2$.
- 6. If $\Gamma \vdash t_1 t_2 : \mathbb{R}$, then

- 1. If $\Gamma \vdash \text{true} : \mathbb{R}$, then $\mathbb{R} = \text{Bool}$.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash \text{if } t_1$ then t_2 else $t_3 : \mathbb{R}$, then $\Gamma \vdash t_1 :$ Bool and $\Gamma \vdash t_2, t_3 : \mathbb{R}$.
- 4. If $\Gamma \vdash \mathbf{x} : \mathbf{R}$, then $\mathbf{x} : \mathbf{R} \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with Γ , $x: T_1 \vdash t_2 : R_2$.
- 6. If $\Gamma \vdash t_1 \quad t_2 : \mathbb{R}$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow \mathbb{R}$ and $\Gamma \vdash t_2 : T_{11}$.

Lemma:

1. If \mathbf{v} is a value of type **Bool**, then

Lemma:

1. If \mathbf{v} is a value of type Bool, then \mathbf{v} is either true or false.

- 1. If \mathbf{v} is a value of type Bool, then \mathbf{v} is either true or false.
- 2. If **v** is a value of type $T_1 \rightarrow T_2$, then

- 1. If \mathbf{v} is a value of type Bool, then \mathbf{v} is either true or false.
- 2. If **v** is a value of type $T_1 \rightarrow T_2$, then **v** has the form $\lambda x: T_1 \cdot t_2$.

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on typing derivations.

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because **t** is closed). The abstraction case is immediate, since abstractions are values.

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $t = t_1 \ t_2$ with $\vdash t_1 : T_{11} \rightarrow T_{12}$ and $\vdash t_2 : T_{11}$.

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $t = t_1$ t_2 with $\vdash t_1 : T_{11} \rightarrow T_{12}$ and $\vdash t_2 : T_{11}$. By the induction hypothesis, either t_1 is a value or else it can make a step of evaluation, and likewise t_2 .
Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $t = t_1 \ t_2$ with $\vdash t_1 : T_{11} \rightarrow T_{12}$ and $\vdash t_2 : T_{11}$. By the induction hypothesis, either t_1 is a value or else it can make a step of evaluation, and likewise t_2 . If t_1 can take a step, then rule E-APP1 applies to t. If t_1 is a value and t_2 can take a step, then rule E-APP2 applies. Finally, if both t_1 and t_2 are values, then the canonical forms lemma tells us that t_1 has the form $\lambda x: T_{11} \cdot t_{12}$, and so rule E-APPABS applies to t.

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

Proof: By induction

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

Proof: By induction on typing derivations.[Which case is the hard one?]

```
Theorem: If \Gamma \vdash t : T and t \longrightarrow t', then \Gamma \vdash t' : T.
```

Proof: By induction on typing derivations.[Which case is the hard one?]

```
Case T-APP: Given t = t_1 t_2

\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}

\Gamma \vdash t_2 : T_{11}

T = T_{12}

Show \Gamma \vdash t' : T_{12}
```

```
Theorem: If \Gamma \vdash t : T and t \longrightarrow t', then \Gamma \vdash t' : T.
```

Proof: By induction on typing derivations.[Which case is the hard one?]

Case T-APP: Given $t = t_1 t_2$ $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$ $\Gamma \vdash t_2 : T_{11}$ $T = T_{12}$ Show $\Gamma \vdash t' : T_{12}$ By the inversion lemma for evaluation, there are three subcases...

```
Theorem: If \Gamma \vdash t: T and t \longrightarrow t', then \Gamma \vdash t': T.
```

Proof: By induction on typing derivations.[Which case is the hard one?]

```
Case T-APP: Given t = t_1 t_2

\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}

\Gamma \vdash t_2 : T_{11}

T = T_{12}

Show \Gamma \vdash t' : T_{12}

By the inversion lemma for evaluation, there are three subcases...

Subcase: t_1 = \lambda x : T_{11} . t_{12}

t_2 a value v_2

t' = [x \mapsto v_2]t_{12}
```

```
Theorem: If \Gamma \vdash t: T and t \longrightarrow t', then \Gamma \vdash t': T.
```

Proof: By induction on typing derivations.[Which case is the hard one?]

```
Case T-APP: Given t = t_1 t_2

\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}

\Gamma \vdash t_2 : T_{11}

T = T_{12}

Show \Gamma \vdash t' : T_{12}

By the inversion lemma for evaluation, there are three subcases...

Subcase: t_1 = \lambda x : T_{11} . t_{12}

t_2 a value v_2

t' = [x \mapsto v_2]t_{12}

Uh oh.
```

The "Substitution Lemma"

Lemma: Types are preserved under substitution.

```
If \Gamma, x: S \vdash t : T and \Gamma \vdash s : S, then \Gamma \vdash [x \mapsto s]t : T.
```

The "Substitution Lemma"

Lemma: Types are preserved under substitution.

```
If \Gamma, x: S \vdash t : T and \Gamma \vdash s : S, then \Gamma \vdash [x \mapsto s]t : T.
```

Proof: ...

Derived forms

♦ Syntatic sugar

♦ Internal language vs. external (surface) language

Equivalence of the two definitions

[board]

Evaluation rules for pairs

$\{v_1, v_2\}.1 \longrightarrow v_1$	(E-PAIRBETA1)
$\{v_1, v_2\}.2 \longrightarrow v_2$	(E-PAIRBETA2)
$\frac{\mathtt{t_1} \longrightarrow \mathtt{t_1'}}{\mathtt{t_1.1} \longrightarrow \mathtt{t_1'.1}}$	(E-Proj1)
$\frac{\mathtt{t_1} \longrightarrow \mathtt{t_1'}}{\mathtt{t_1.2} \longrightarrow \mathtt{t_1'.2}}$	(E-PROJ2)
$\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}'_1}{\{\mathtt{t}_1, \mathtt{t}_2\} \longrightarrow \{\mathtt{t}'_1, \mathtt{t}_2\}}$	(E-PAIR1)
$\begin{array}{c} \mathtt{t}_2 \longrightarrow \mathtt{t}_2' \\ \hline \{\mathtt{v}_1, \mathtt{t}_2\} \longrightarrow \{\mathtt{v}_1, \mathtt{t}_2'\} \end{array}$	(E-PAIR2)

Discussion

Intro vs. elim forms

An introduction form for a given type gives us a way of constructing elements of this type.

An elimination form for a type gives us a way of using elements of this type.

What typing rules are introduction forms? What are elimination forms?

The Curry-Howard Correspondence

In constructive logics, a proof of \mathbf{P} must provide evidence for \mathbf{P} .

♦ "law of the excluded middle" — $\mathbf{P} \lor \neg \mathbf{P}$ — not recognized.

A proof of $\mathbf{P} \wedge \mathbf{Q}$ is a pair of evidence for \mathbf{P} and evidence for \mathbf{Q} .

A proof of $P \supset Q$ is a procedure for transforming evidence for P into evidence for Q.

Propositions as Types

Logic	PROGRAMMING LANGUAGES
propositions	types
proposition $P \supset Q$	$\operatorname{type} P{\rightarrow} {\tt Q}$
proposition $P \land Q$	type $P \times Q$
proof of proposition \mathbf{P}	term t of type P
proposition \mathbf{P} is provable	type P is inhabited (by some term)

Propositions as Types

Logic	PROGRAMMING LANGUAGES
propositions	types
proposition $\mathbf{P} \supset \mathbf{Q}$	type $P \rightarrow Q$
proposition $P \land Q$	type $\mathbf{P} \times \mathbf{Q}$
proof of proposition \mathbf{P}	term t of type P
proposition \mathbf{P} is provable	type P is inhabited (by some term)
	evaluation

Propositions as Types

Logic	PROGRAMMING LANGUAGES
propositions	types
proposition $P \supset Q$	type $P \rightarrow Q$
proposition $P \land Q$	type $\mathbf{P} \times \mathbf{Q}$
proof of proposition P	term t of type P
proposition \mathbf{P} is provable	type P is inhabited (by some term)
proof simplification	evaluation
(a.k.a. "cut elimination")	

Erasure

erase(x) = x $erase(\lambda x:T_1. t_2) = \lambda x. erase(t_2)$ $erase(t_1 t_2) = erase(t_1) erase(t_2)$

Typability

An untyped λ -term m is said to be typable if there is some term t in the simply typed lambda-calculus, some type T, and some context Γ such that erase(t) = m and $\Gamma \vdash t : T$.

Cf. type reconstruction in OCaml.