CIS 500

Software Foundations

Fall 2004

6 October

_

CIS 500, 6 October

/ Midterm 1 is next Wednesday

¢ Today’s lecture will not be covered by the midterm.
¢ Next Monday, review class.

¢ OIld exams and review questions on webpage.

¢ No recitation sections next week.

¢ New office hours next week, watch newsgroup for details.

\

CIS 500, 6 October

/ Plans

Where we’ve been:

¢ Inductive definitions
¢ abstract syntax

¢ inference rules
¢ Proofs by structural induction
¢ Operational semantics
¢ The lambda-calculus
¢ Typing rules and type soundness

\

CIS 500, 6 October

4 Plans R

Where we’ve been:

¢ Inductive definitions
¢ abstract syntax

¢ inference rules
¢ Proofs by structural induction
¢ Operational semantics
¢ The lambda-calculus
¢ Typing rules and type soundness
Where we’re going:
¢ “Simple types” for the lambda-calculus

¢ Formalizing more features of real-world languages (records, datatypes,

references, exceptions, etc.)

¢ Subtyping

\\0 Objects /

CIS 500, 6 October 3-a

The Simply Typed Lambda-Calculus

_

CIS 500, 6 October

/ Lambda-calculus with booleans

t = terms
X variable
AX.t abstraction
tt application
true constant true
false constant false
if t then t else t conditional

N — values
Ax.t abstraction value
true true value
false false value

\

CIS 500, 6 October

/ “Simple Types”

T = types
Bool type of booleans
T—T types of functions

.

CIS 500, 6 October

.

Typing rules

true : Bool

false : Bool
t1 : Bool try ¢ T ty3 : T
if t1 then t> else t3 : T

~

(T-TRUE)
(T-FALSE)

(T-1IF)

CIS 500, 6 October

.

Typing rules

true : Bool

false : Bool
t1 : Bool try ¢ T ty3 : T
if t1 then t> else t3 : T

~

(T-TRUE)
(T-FALSE)

(T-1IF)

(T-VAR)

CIS 500, 6 October

.

Typing rules

true : Bool
false : Bool

t1 : Bool try ¢ T t3

N

if t1 then t> else t3 : T

x:TeTl

INkFx : T

~

(T-TRUE)
(T-FALSE)

(T-1IF)

(T-VAR)

CIS 500, 6 October

7-b

.

Typing rules

" Ftrue : Bool

' +false : Bool

I"+tq7 : Bool 'ty ¢ T INHt3 ¢ T

"' Hif t1 then t»> else t3

x:TeTl

INkFx : T

T

~

(T-TRUE)
(T-FALSE)

(T-1IF)

(T-VAR)

CIS 500, 6 October

\

Typing rules

" Ftrue : Bool

' +false : Bool

I"+tq7 : Bool 'ty ¢ T I't3 :

["Hif t1 then t> else t3 : T

x:TeTl

INkFx : T

r,X:T1 Ft, @ Ty

INFAx:T71.t2 : T1—T>

~

(T-TRUE)
(T-FALSE)

(T-1IF)
(T-VAR)

(T-ABS)

/

CIS 500, 6 October

7-d

\

Typing rules

~

I' Ftrue : Bool (T-TRUE)
' false : Bool (T-FALSE)
I"+tq7 : Bool 'ty ¢ T I't3 :
(T-1IF)
I"'kif t1 then t2 else t3 : T
x:TeTl
(T-VAR)
MNkFx : T
I', x:Ty Ft2 1 T2
(T-ABS)
INFAx:T71.t2 : T1—T>
INkt1 @ T11—T12 I"'Ht2 @ Tq4q
(T-App)
INHt1 t2 @ Ti2
CIS 500, 6 October 7-e

/ Typing Derivations

What derivations justify the following typing statements?

¢ F (Ax:Bool.x) true : Bool
¢ f:Bool—Bool F f (if false then true else false) : Bool

¢ f:Bool—Bool - Ax:Bool. f (if x then false else x) : Bool—Bool

\

CIS 500, 6 October

/ Properties of A_, \

As before, the fundamental property of the type system we have just defined is

soundness with respect to the operational semantics.

\ /

CIS 500, 6 October 9

-~

\

Properties of A_, \

As before, the fundamental property of the type system we have just defined is

soundness with respect to the operational semantics.

1. Progress: A closed, well-typed term is not stuck

If -t : T, then either t is a value or else t — t’ for some t’.

2. Preservation: Types are preserved by one-step evaluation

IfI't:Tandt — t’, then THt’ : T.

CIS 500, 6 October 9-a

-

Same steps as before...

.

Proving progress

CIS 500, 6 October

10

/ Proving progress \

Same steps as before...

¢ inversion lemma for typing relation
¢ canonical forms lemma

¢ progress theorem

\ /

CIS 500, 6 October 10-a

/ Typing rules again (for reference) \

I' - true : Bool (T-TRUE)
I' - false : Bool (T-FALSE)
' t7 : Bool N+t : T NEt3 : T
(T-Ir)
' if t7 then t2 else t3 : T
x:TeTl
(T-VAR)
NkFx : T
F, x:T1 Ft2 : Ty
(T-ABS)
I"FAx:T71.t2 : T1—T>2
INkt1 @ T11—T12 I"'Ht2 @ Tqq
(T-App)

INHt1 t2 @ Ti2

\ /

CIS 500, 6 October 11

/ Inversion

Lemma:

1. If ' - true : R, then R = Bool.
2. It '+ false : R, then R = Bool.

3. f ' if t7 then t2 else t3 : R,then ' t7 : Bool and
' t2,t3 : R.

.

CIS 500, 6 October

12

/ Inversion

Lemma:

1. If ' - true : R, then R = Bool.
2. It '+ false : R, then R = Bool.

3. f ' if t7 then t2 else t3 : R,then ' t7 : Bool and
' t2,t3 : R.

4. If '+ x : R, then

.

CIS 500, 6 October

/ Inversion

Lemma:

1. If ' - true : R, then R = Bool.
2. It '+ false : R, then R = Bool.

3. f ' if t7 then t2 else t3 : R,then ' t7 : Bool and
' t2,t3 : R.

4. If ' x : R, then x:R €T

.

CIS 500, 6 October

12-b

/ Inversion

Lemma:

1. If ' - true : R, then R = Bool.
2. It '+ false : R, then R = Bool.

3. f ' if t7 then t2 else t3 : R,then ' t7 : Bool and
' t2,t3 : R.

4. If ' x : R, then x:R €T

5. f ' Ax:Ty.t2 : R, then

.

CIS 500, 6 October

/ Inversion \

Lemma:

I. If ' - true : R, then R = Bool.
2. If '+ false : R, then R = Bool.

3. f ' if t7 then t2 else t3 : R,then ' t7 : Bool and
' t2,t3 : R.

4. If ' x : R, then x:R € T'.

5. f ' Ax:Tqy.t2 : R, then R = Ty —R2 for some Ry with I', x:T7 F t2 : Ra.

\ /

CIS 500, 6 October 12-d

-~

\

Inversion \

Lemma:
I. If ' - true : R, then R = Bool.
2. If '+ false : R, then R = Bool.
3. f ' if t7 then t2 else t3 : R,then ' t7 : Bool and
' t2,t3 : R.
4. If ' x : R, then x:R € T'.
5. f ' Ax:Ty.t2 : R, then R = Ty —R; for some R with I', x: Ty - t2 : Ra.
6. fI'~ty t2 : R, then

CIS 500, 6 October

/ Inversion

Lemma:

I. If ' - true : R, then R = Bool.
2. If '+ false : R, then R = Bool.

3. f ' if t7 then t2 else t3 : R,then ' t7 : Bool and
' t2,t3 : R.

4. If ' x : R, then x:R € T'.

6. If 'ty t2 : R, then there is some type Ty71 such that ' - t7 : T;1—R
and ' t> : Tq7.

\

5. f ' Ax:Tqy.t2 : R, then R = Ty —R2 for some Ry with I', x:T7 F t2 : Ra.

/

CIS 500, 6 October

12-f

Lemma:

.

Canonical Forms

CIS 500, 6 October

13

/ Canonical Forms \

Lemma:

1. If v is a value of type Bool, then

. /

CIS 500, 6 October 13-a

/ Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

.

CIS 500, 6 October

13-b

/ Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1 —T2, then

.

CIS 500, 6 October

13-c

/ Canonical Forms \

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1 —T2, then v has the form Ax:Ty.t>2.

\ /

CIS 500, 6 October 13-d

/ Progress \

Theorem: Suppose t is a closed, well-typed term (that is, = t : T for some T).

Then either t is a value or else there is some t’ with t — t”.

Proof: By induction

\ /

CIS 500, 6 October 14

/ Progress \

Theorem: Suppose t is a closed, well-typed term (that is, = t : T for some T).

Then either t is a value or else there is some t’ with t — t”.

Proof: By induction on typing derivations.

\ /

CIS 500, 6 October 14-a

/ Progress \

Theorem: Suppose t is a closed, well-typed term (that is, = t : T for some T).

Then either t is a value or else there is some t’ with t — t’.

Proof: By induction on typing derivations. The cases for boolean constants
and conditions are the same as before. The variable case is trivial (because t is

closed). The abstraction case is immediate, since abstractions are values.

_ /

CIS 500, 6 October 14-b

/ Progress \

Theorem: Suppose t is a closed, well-typed term (that is, = t : T for some T).

Then either t is a value or else there is some t’ with t — t’.

Proof: By induction on typing derivations. The cases for boolean constants
and conditions are the same as before. The variable case is trivial (because t is

closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where t = t7 t2 with - t7 : T11—Ty2 and
Ft> : T11.

_ /

CIS 500, 6 October 14-c

/ Progress \

Theorem: Suppose t is a closed, well-typed term (that is, = t : T for some T).

Then either t is a value or else there is some t’ with t — t’.

Proof: By induction on typing derivations. The cases for boolean constants
and conditions are the same as before. The variable case is trivial (because t is

closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where t = t7 t2 with - t7 : T11—Ty2 and
= t2 : T11. By the induction hypothesis, either t1 is a value or else it can

make a step of evaluation, and likewise t>.

_ /

CIS 500, 6 October 14-d

/ Progress \

Theorem: Suppose t is a closed, well-typed term (that is, = t : T for some T).

Then either t is a value or else there is some t’ with t — t’.

Proof: By induction on typing derivations. The cases for boolean constants
and conditions are the same as before. The variable case is trivial (because t is

closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where t = t7 t2 with - t7 : T11—Ty2 and
= t2 : T11. By the induction hypothesis, either t1 is a value or else it can
make a step of evaluation, and likewise t2. If t1 can take a step, then rule
E-AppP1 applies to t. If t7 is a value and t2 can take a step, then rule E-App2
applies. Finally, if both t; and t2 are values, then the canonical forms lemma
tells us that t1 has the form Ax:Ty71.t12, and so rule E-APPABS applies to t.

_

/

CIS 500, 6 October

14-¢

-

Theorem: If '+ t

Proof: By induction

.

Proving Preservation

Tandt — t’, then Tt/ : T.

CIS 500, 6 October

15

/ Proving Preservation \

Theorem: If Tt : Tandt — t’, then Tt : T.

Proof: By induction on typing derivations.
[Which case is the hard one?]

. /

CIS 500, 6 October 15-a

/ Proving Preservation \

Theorem: If Tt : Tandt — t’, then Tt : T.

Proof: By induction on typing derivations.
[Which case is the hard one?]
Case T-Aprp: Given t=1t71 t2
I'Et1 @ T11—=Ta2
I"'Ht2 @ Tqq
T=Ti2
Show Tkt : T2

\ /

CIS 500, 6 October 15-b

/ Proving Preservation \

Theorem: If Tt : Tandt — t’, then Tt : T.

Proof: By induction on typing derivations.

[Which case is the hard one?]

Case T-Aprp: Given t=1t7 t2
I't1 : T11—=T12
'tz @ T
T=Ti2

Show =+’ : T12
By the inversion lemma for evaluation, there are three subcases...

\ /

CIS 500, 6 October 15-c

/ Proving Preservation \

Theorem: If Tt : Tandt — t’, then Tt : T.

Proof: By induction on typing derivations.
[Which case is the hard one?]
Case T-Aprp: Given t=1t7 t2
'ty @ T11—2Tr2
'tz @ T
T=Ti2
Show T Ft’: T2

By the inversion lemma for evaluation, there are three subcases...

Subcase: t71 =Ax:T11. ti12
t> a value vz

t! =[x va2lt12

\ /

CIS 500, 6 October 15-d

/ Proving Preservation \

Theorem: If Tt : Tandt — t’, then Tt : T.

Proof: By induction on typing derivations.

[Which case is the hard one?]

Case T-Aprp: Given t=1t7 t2
I't1 : T11—=T12
'tz @ T
T=Ti2

Show =+’ : T12
By the inversion lemma for evaluation, there are three subcases...

Subcase: t71 =Ax:T11. ti12
t> a value vz

t! =[x va2lt12

Qh oh. /

CIS 500, 6 October 15-e

/ The “Substitution Lemma”

Lemma: Types are preserved under substitition.

IfT x:SHt :TandT"F s : S, then ' [x — st :

.

T.

CIS 500, 6 October

16

/ The “Substitution Lemma”

Lemma: Types are preserved under substitition.

IfT x:SHt :TandT"F s : S, then ' [x — st :

Proof: ...

.

T.

CIS 500, 6 October

16-a

On to real programming languages...

_

CIS 500, 6 October

17

t —

unit
v =

unit
T —

Unit

New typing rules

\

The Unit type

' unit : Unit

terms

constant unit

values

constant untt

types
unat type

'+t : T

(T-UnIT)

CIS 500, 6 October

18

.

t1;T2

Sequencing

terms

CIS 500, 6 October

19

/ Sequencing

t = terms
t1;5t2
t1 — t1
t1;t2 — t7;t2
unit;t, — t2
' t7 : Unit 'ty : T

IN'Et1;t2 @ T2

.

(E-SEQ)

(E-SEQNEXT)

(T-SEQ)

/

CIS 500, 6 October

19-a

/ Derived forms

¢ Syntatic sugar

¢ Internal language vs. external (surface) language

.

CIS 500, 6 October

20

.

Sequencing as a derived form

t1;t2

de

f

(Ax:Unit.t2) t1
where x € F'V(t2)

CIS 500, 6 October

21

/ Equivalence of the two definitions \

[board]

. /

CIS 500, 6 October 22

/ Ascription \

New syntactic forms
t = .. terms

t as T ascription

/

New evaluation rules t— t

vi as T — vy (E-ASCRIBE)

t1 — t]

(E-ASCRIBE1)
t1 as T — t{ as T

'+t : T

New typing rules

N't; : T
(T-ASCRIBE)

'ty as T: T

\ /

23

CIS 500, 6 October

/ Ascription as a derived form

def
t as T = (Ax:T. x) t

.

CIS 500, 6 October

/ Let-bindings
New syntactic forms
t = .. terms
let x=t in t let binding

New evaluation rules

let x=v7 in t2 — [x — v1]t2

t1 — t]

t — t’

let x=t7 in t2 — let x=t] in t2

New typing rules

I'+t7 : T4 ' x:T1 Ft2 : T2

' let x=t7 in t> : T»

\

(E-LETV)

(E-LET)

Nt : T

(T-LET)

CIS 500, 6 October

25

t —
{t,t}
t.1
t.2
v —
{v,v}
T =
T1 X T>

.

Pairs

terms

pair
first projection

second projection

values

pair value

types
product type

CIS 500, 6 October

26

\

Evaluation rules for pairs

{vi,v2}.1 — vy

{vi,v2}.2 — v2

~

(E-PAIRBETA1)
(E-PAIRBETA2)

CIS 500, 6 October

t1 — t1
(E-ProJl)
t1.1 — t7.1
t1 — t]
(E-PROJ2)
1.2 — t7.2
t1 — t1
(E-PAIR1)
{t1,t2} — {t7,t2}
t2 — t}
(E-PAIR2)
{v1,t2} — {v1,t3}
27

.

Typing rules for pairs

INkt7 : T4 'k t2 : T2

N {t1,t2} : T1 X T2

I'E+t7 : T11 X T12

I'Ft7.1: T4

' t7 : T11 X T12

I't7.2: Tq2

(T-PAIR)

(T-ProJ1)

(T-PrOJ2)

/

CIS 500, 6 October

28

t —
{t; '€ "}
t.1
v =
{vi "¢ "}
T —

{T; €' "}

.

Tuples

terms

tuple

projection

values

tuple value

types
tuple type

CIS 500, 6 October

29

.

Evaluation rules for tuples

{vi "¢ "} — vy

t1 — t]

t1.i — t1.1d

~

(E-PROJTUPLE)

(E-PrOJ)

(E-TUPLE)

/

CIS 500, 6 October

30

.

Typing rules for tuples

foreachi T'Fti : Ty

I - {ti iEI..n} . {T1 161..71}

Fr-+ty : {T; '€ "}

r|—t1.j ' T

~

(T-TuPLE)

(T-ProJ)

CIS 500, 6 October

31

t —
{li=t; "€ "}
t.1
VvV p—
{Li=v; '€ "}
T o=

{1;:T; '€}

.

Records

terms

record

projection

values

record value

types
type of records

CIS 500, 6 October

32

/ Evaluation rules for records \

{li=vi '€ "1 — vy (E-PROJRCD)

t1 — t1

(E-PRroJ)
t1.1 — t1.1

/

(E-Rcp)
{li=vi €17 1=t , 1=ty K€"}

\ /

CIS 500, 6 October 33

.

Typing rules for records

foreachi T'Fti : Ty

' {1;=t; tel..ny . {1;:T; tel..ny

Fty @ {1;:T; '€}

r|—t1.lj ' T

(T-Rcb)

(T-ProJ)

CIS 500, 6 October

34

\

Discussion

CIS 500, 6 October

35

/ Intro vs. elim forms \

An introduction form for a given type gives us a way of constructing elements

of this type.
An elimination form for a type gives us a way of using elements of this type.

What typing rules are introduction forms? What are elimination forms?

\ /

CIS 500, 6 October 36

/ The Curry-Howard Correspondence \

In constructive logics, a proof of P must provide evidence for P.

¢ “law of the excluded middle” — PV —P — not recognized.
A proof of P /A Q is a pair of evidence for P and evidence for Q.

A proof of P D Q is a procedure for transforming evidence for P into evidence

for Q.

\ /

CIS 500, 6 October 37

Propositions as Types

LogGIc PROGRAMMING LANGUAGES
propositions types

proposition P D Q type P—Q

proposition P A\ Q type P X Q

proof of proposition P

proposition P is provable

\

term t of type P
type P is inhabited (by some term)

CIS 500, 6 October

38

/ Propositions as Types \

LogGIc PROGRAMMING LANGUAGES

propositions types

proposition P D Q type P—Q

proposition P A\ Q type P X Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)
evaluation

\ /

CIS 500, 6 October 38-a

/ Propositions as Types \

LogGIc PROGRAMMING LANGUAGES
propositions types

proposition P D Q type P—Q

proposition P A\ Q type P X Q

proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)
proof simplification evaluation

(a.k.a. “cut elimination”)

\ /

CIS 500, 6 October 38-b

.

Erasure
erase(x) = X
erase(Ax:T1. t2) = Ax. erase(tz)

erase(t1 t2)

= erase(t1) erase(t2)

CIS 500, 6 October

39

/ Typability \

An untyped A-term m is said to be typable if there is some term t in the simply
typed lambda-calculus, some type T, and some context I' such that
erase(t) =mand '+t : T.

Cf. type reconstruction in OCaml.

\ /

CIS 500, 6 October 40

