
CIS 500 Software Foundations

Homework Assignment 4

λ-calculus, de Bruijn notation

Due: Monday, October 10, 2005, by noon

Submission instructions:

You must submit your solutions electronically (in ascii, postscript, or PDF format). Electronic solutions
should be submitted following the same instructions as last time; these can be found at http://www.seas.
upenn.edu/∼cis500/homework.html. Do not email your solutions to us.

1 Exercise As quick self-checks, you should have done exercises 6.1.1, 6.2.2, 6.2.5, 6.2.7, and 6.3.1 in TAPL
when you read Chapter 6. If you did not, do them now.1 Do not turn in anything for this exercise.

2 Exercise We can extend the untyped λ-calculus (Figure 5-3 in TAPL) with a primitive notion of lists as
follows. This is in contrast to encoding lists in the untyped λ-calculus, which you saw in exercise 5.2.8 from
TAPL.

t ::= . . . terms:
[] empty list (nil)
t :: t cons
match t with [] ⇒ t | x1 :: x2 ⇒ t case analysis on lists

v ::= . . . values:
lv list values

lv ::= []
v :: lv

t1 → t1
′

E-Cons1
t1 :: t2 → t1

′ :: t2

t2 → t2
′

E-Cons2
v1 :: t2 → v1 :: t2

′

t1 → t1
′

E-Match
(match t1 with [] ⇒ t2 | x1 :: x2 ⇒ t3) → (match t1

′ with [] ⇒ t2 | x1 :: x2 ⇒ t3)

E-MatchNil
(match [] with [] ⇒ t2 | x1 :: x2 ⇒ t3) → t2

side conditions: x2 6∈ FV (v) and x1 6= x2
E-MatchCons

(match v :: lv with [] ⇒ t2 | x1 :: x2 ⇒ t3) → [x2 7→ lv][x1 7→ v]t3

In the expression match t with [] ⇒ t1 | x1 :: x2 ⇒ t2, we consider x1 and x2 to be bound in t2, just as we
consider x to be bound in t when we write λx.t. As in OCaml, :: associates to the right; for example,
t1 :: t2 :: t3 is the same as t1 :: (t2 :: t3).

1. In one step, what does match (λx.y) :: (λy.x) :: [] with [] ⇒ z | a :: b ⇒ (λx.b) :: (λy.a) :: [] evaluate
to according to the above rules? Show the derivation.

1In general, you should be doing all the one ? exercises when you read TAPL. They are designed to make sure you have a

minimal understanding of what you’re reading.

1



2. Read exercise 6.1.5 from TAPL. You may look at the solution in the back of the book. Now, extend
the definitions for removenamesΓ(t) and restorenamesΓ(t) to include the primitive lists introduced
above.

3. Now prove that restorenamesΓ(removenamesΓ(t)) = t for all t, up to renaming of bound variables.
Please turn in the entire proof. However, you may ignore primitive lists for this particular proof; that
is, you may assume that t is a term from the following grammar:

t ::= x

t t

λx.t

4. Extend definition 6.2.4 in TAPL so that it is also defined on your nameless representation of lists. That
is, give the definition of substitution on your nameless representation of lists.

5. Write down the nameless equivalents of all the evaluation rules above (i.e., E-Cons1, E-Cons2, etc.).
For example, the version of E-AppAbs on p.81 of TAPL is the nameless equivalent of the E-AppAbs

rule from Figure 5-3.

3 Exercise In this exercise, we’re back to named λ-calculus terms. However, instead of the familiar call-
by-value evaluation rules, we’ll consider leftmost/outermost evaluation. This is called the “normal order”
strategy in TAPL (see p.56). We can define this evaluation strategy by the following rules.

t1 → t1
′

E-App1
t1 t2 → t1

′ t2

λx.t1 6→
E-App2

(λx.t1) t2 → [x 7→ t2]t1

t2 → t2
′

E-App3
x t2 → x t2

′

(s t) 6→ t2 → t2
′

E-App4
(s t) t2 → (s t) t2

′

t1 → t1
′

E-Abs
λx.t1 → λx.t′

1

Here, we use the notation t 6→ to indicate that for all t′, we cannot build a derivation of t → t′.

1. Spend a few moments convincing yourself that these rules lead to reducing the leftmost, outermost
redex in a term. Remember that “leftmost” and “outermost” describe the position of the redex when
we view the term as an abstract syntax tree. Do not turn in anything for this problem.

2. We can modify the eval1 function from Chapter 7 to implement these rules instead of the familiar
call-by-value rules. Lucky for you, someone tried to do that already and produced the following code.

2



let rec eval1 ctx t = match t with

(* First case. *)

TmAbs(fi,x,t1) ->

let t1’ = eval1 ctx t1 in

TmAbs(fi,x,t1’)

| TmApp(fi,t1,t2) ->

(try

(* Second case. *)

let t1’ = eval1 ctx t1 in

TmApp(fi,t1’,t2)

with

NoRuleApplies ->

(* Third case. *)

let t2’ = eval1 ctx t2 in

TmApp(fi,t1,t2’))

| _ ->

raise NoRuleApplies

Not so lucky for you, while this code compiles, it does contain some major mistakes in one of the cases
(the comments indicate there are three cases in the code). Which case is that and how would you fix
it? Do not modify an actual implementation for this problem. Just write out your fix to the code by
hand; we will ignore minor syntax errors as long as your intent is clear (and correct).

4 Debriefing

1. How many hours did each person in your group spend on this assignment, including time taken to read
TAPL?

2. Would you rate it as easy, moderate, or difficult?

3. Did everyone in your study group participate?

4. How deeply do you feel you understand the material it covers (0%–100%)?

If you have any other comments, we would like to hear them; please send them cis500@cis.upenn.edu.

3


