

Nameless Representation of Terms

CIS500: Software Foundations

A Proof on λ -Terms

We want to prove that if

$$z \in FV([x \mapsto v]u)$$

then

$$z \in (FV(u) \setminus \{x\}) \cup FV(v)$$

In other words,

 $FV([x \mapsto v]u) \subseteq (FV(u) \setminus \{x\}) \cup FV(v)$

Proof by induction on the structure of u.

Proof (2)

- Case u = x: Then $[x \mapsto v]u = v$, and $FV(v) \subseteq FV(u) \setminus \{x\} \cup FV(v)$
- 6 Case u = y, where $y \neq x$: Then $[x \mapsto v]u = y$, and

$$FV(u) = FV(y)$$

= {y}
$$\subseteq (\{y\} \setminus \{x\}) \cup FV(v)$$

= (FV(u) \ {x}) \ FV(v)

6 Case $u = \lambda y$. t, where $y \neq x$: Then

$$[x\mapsto v]u=\lambda y.\;[x\mapsto v]t$$

By the IH, $FV([x \mapsto v]t) \subseteq (FV(t) \setminus \{x\}) \cup FV(v)$. So

$$FV([x \mapsto v]u) = FV(\lambda y. [x \mapsto v] t)$$

= $FV([x \mapsto v] t) \setminus \{y\}$
$$\subseteq ((FV(t) \setminus \{x\}) \cup FV(v)) \setminus \{y\}$$

$$\subseteq (FV(t) \setminus \{x\} \setminus \{y\}) \cup FV(v)$$

= $(FV(t) \setminus \{y\} \setminus \{x\}) \cup FV(v)$
= $(FV(u) \setminus \{x\}) \cup FV(v)$

• Case $u = t_1 t_2$: Exercise.

Now on to the main topic ...

Nameless Representation of Terms

Representing Terms

$$\begin{array}{cccc} t & ::= & x \\ & \mid & \lambda x. \ t \\ & \mid & t_1 \ t_2 \end{array}$$

Choosing a concrete way to represent terms is necessary when using computers to work with λ -terms.

- 6 Implementing programming language evaluators.
- 6 Writing machine-checkable definitions and proofs of theorems.

Variable Capture

$[x \mapsto \lambda y. z](\lambda z. x) \neq \lambda z. \lambda y. z$

How can we be sure that our implementation doesn't make this mistake?

Idea: Rename During Substitution

Rename z to z' before applying substitution.

$$[x \mapsto \lambda y. z](\lambda z. x) = \lambda z'. \lambda y. z$$

Idea: "Barendregt Convention"

We can make sure our terms never use the same variable name twice. So we must always start with

 $[x \mapsto \lambda y. z](\lambda z'. x)$

Idea: "Barendregt Convention"

We can make sure our terms never use the same variable name twice. So we must always start with

$$[x \mapsto \lambda y. \ z](\lambda z'. \ x)$$

But then what happens here?

$$[x \mapsto \lambda y. \ z](\lambda z. \ x \ x)$$

More Extreme Proposals

- 6 Explicit Substitutions: Make substitutions part of the syntax and encode renaming into the evaluation rules.
- 6 Combinators: Find a language with applications but no variables or binding, and translate terms to this langauge.

Devise Canonical Representation

Maybe we can think of a unique representation for α -equivalent terms.

Devise Canonical Representation

Maybe we can think of a unique representation for α -equivalent terms. For

$$\lambda x. \ \lambda y. \ x \ (y \ x)$$

we could write

 λ . λ . 1 (0 1)

Is this representation unique?

Devise Canonical Representation

Maybe we can think of a unique representation for α -equivalent terms. For

$$\lambda x. \ \lambda y. \ x \ (y \ x)$$

we could write

 λ . λ . 1 (0 1)

- Is this representation unique?
- What about free variables?

Formal Definition of de Bruijn Terms

We will define a family of sets T_n so that the set T_i can represent terms with at most *i* free variables.

$$\frac{0 \le k < n}{k \in \mathcal{T}_n} \qquad \frac{t \in \mathcal{T}_n \quad n > 0}{\lambda . t \in \mathcal{T}_{n-1}}$$

$$\frac{t_1 \in \mathcal{T}_n \quad t_2 \in \mathcal{T}_n}{(t_1 \ t_2) \in \mathcal{T}_n}$$

Free Variables

What do we do with y?

 $\lambda x. y x$

Free Variables

What do we do with *y*?

 $\lambda x. y x$

We need some sort of context of definitions, for example

$$\Gamma = x \mapsto 4, y \mapsto 3, z \mapsto 2, a \mapsto 1, b \mapsto 0$$

Then we should be able to define a function db_{Γ} , such that

$$db_{\Gamma}(x (y z)) = 4 (3 2) \qquad db_{\Gamma}(\lambda x. y x) = \lambda. 4 0$$

Naming Contexts

Let's simplify Γ to be a sequence of variable names.

$$\Gamma = x_{n-1}, \dots, x_1, x_0$$

Then we'll define

$$dom(\Gamma) = \{x_{n-1}, \dots, x_1, x_0\}$$

And

 $\Gamma(x) =$ rightmost index of x in Γ

Converting to Nameless Representation

$db_{\Gamma}(x) = \Gamma(x)$ $db_{\Gamma}(\lambda x. t) = \lambda.db_{\Gamma,x}(t)$ $db_{\Gamma}(t_1 t_2) = db_{\Gamma}(t_1) db_{\Gamma}(t_2)$

Converting to Nameless Representation

$$db_{\Gamma}(x) = \Gamma(x)$$

$$db_{\Gamma}(\lambda x. t) = \lambda.db_{\Gamma,x}(t)$$

$$db_{\Gamma}(t_1 t_2) = db_{\Gamma}(t_1) db_{\Gamma}(t_2)$$

What is the type of db_{Γ} ?

Converting to Nameless Representation

$$db_{\Gamma}(x) = \Gamma(x)$$

$$db_{\Gamma}(\lambda x. t) = \lambda.db_{\Gamma,x}(t)$$

$$db_{\Gamma}(t_1 t_2) = db_{\Gamma}(t_1) db_{\Gamma}(t_2)$$

What is the type of db_{Γ} ?

$$db_{\Gamma}: \mathcal{T}_{\lambda} \to \mathcal{T}_{len(\Gamma)}$$

Conversion Example

We will work with $\Gamma = x, y, z$ and will convert the term

 $\lambda x. y x$

Then we have

$$db_{x,y,z}(\lambda x. y x) = \lambda. db_{x,y,z,x}(y x)$$

= $\lambda. db_{x,y,z,x}(y) db_{x,y,z,x}(x)$
= $\lambda. 2 0$

Defining Substitution

Substitution on Nameless Terms

We must define

$$[k \mapsto s]t$$

for terms in T_n . But how?

Substitution on Nameless Terms

We must define

 $[k \mapsto s]t$

for terms in T_n . But how? We want to guarantee

$$db_{\Gamma}([x \mapsto s]t) = [\Gamma(x) \mapsto db_{\Gamma}(s)]db_{\Gamma}(t)$$

for all Γ such that

 $FV(s) \cup FV(t) \cup \{x\} \subseteq dom(\Gamma)$

First Attempt

$$[j \mapsto s]k = \begin{cases} s & \text{if } k = j \\ k & \text{otherwise} \end{cases}$$
$$[j \mapsto s](\lambda t) = \lambda . [j \mapsto s]t$$
$$[j \mapsto s](t_1 t_2) = ([j \mapsto s]t_1) ([j \mapsto s]t_2)$$

Counter-Example

 $[x \mapsto \lambda z. z](x (\lambda y. y))$

Let $\Gamma = x$.

$$db_{\Gamma}([x \mapsto \lambda z. z](x (\lambda y. y))) = db_{\Gamma}((\lambda z. z) (\lambda y. y))$$
$$= (\lambda. 0) (\lambda. 0)$$

but

$$[\Gamma(x) \mapsto db_{\Gamma}(\lambda z. z)]db_{\Gamma}(x (\lambda y. y)) = [0 \mapsto \lambda. 0](0 (\lambda. 0))$$
$$= (\lambda. 0) (\lambda. [0 \mapsto \lambda. 0]0)$$
$$= (\lambda. 0) (\lambda. \lambda. 0)$$

Second Attempt

$$[j \mapsto s]k = \begin{cases} s & \text{if } k = j \\ k & \text{otherwise} \end{cases}$$
$$[j \mapsto s](\lambda t) = \lambda [j + 1 \mapsto s]t$$
$$[j \mapsto s](t_1 t_2) = ([j \mapsto s]t_1) ([j \mapsto s]t_2)$$

Counter-Example

$$[x \mapsto \lambda y. w] \lambda z. x$$

Let $\Gamma = x, w$.

$$db_{\Gamma}([x \mapsto \lambda y. w]\lambda z. x) = db_{\Gamma}(\lambda z. \lambda y. w)$$
$$= \lambda. db_{\Gamma,z}(\lambda y. w)$$
$$= \lambda. \lambda. db_{\Gamma,z,y}(w)$$
$$= \lambda. \lambda. 2$$

but

$$[\Gamma(x) \mapsto db_{\Gamma}(\lambda y. w)]db_{\Gamma}(\lambda z. x) = [1 \mapsto \lambda. 1]\lambda. 2$$
$$= \lambda. [2 \mapsto \lambda. 1]2$$
$$= \lambda. \lambda. 1$$

Third Attempt (Shifting)

$$\uparrow (k) = k + 1$$

$$\uparrow (\lambda, t) = \lambda, \uparrow (t)$$

$$\uparrow (t_1 t_2) = \uparrow (t_1) \uparrow (t_2)$$

$$[j \mapsto s]k = \begin{cases} s & \text{if } k = j \\ k & \text{otherwise} \end{cases}$$
$$[j \mapsto s](\lambda t) = \lambda [j + 1 \mapsto \uparrow (s)]t$$
$$[j \mapsto s](t_1 t_2) = ([j \mapsto s]t_1) ([j \mapsto s]t_2)$$

Counter-Example

 $[x \mapsto \lambda y. w y] \lambda z. x$

Let $\Gamma = x, w$.

$$db_{\Gamma}([x \mapsto \lambda y. w y]\lambda z. x) = db_{\Gamma}(\lambda z. \lambda y. w y)$$
$$= \lambda. \lambda. db_{\Gamma,z,y}(w y)$$
$$= \lambda. \lambda. 2 0$$

but

$$[\Gamma(x) \mapsto db_{\Gamma}(\lambda y. w y)]db_{\Gamma}(\lambda z. x) = [1 \mapsto \lambda. 1 0]\lambda. 2$$

= $\lambda. [2 \mapsto \uparrow (\lambda. 1 0)]2$
= $\lambda. [2 \mapsto \lambda. 2 1]2$
= $\lambda. \lambda. 2 1$

Nameless Representation of Terms - p.26/29

Third Attempt (Shifting with Cut-Off)

$$\uparrow_{c} (k) = \begin{cases} k & \text{if } k < c \\ k+1 & \text{if } k \ge c \end{cases}$$
$$\uparrow_{c} (\lambda, t) = \lambda, \uparrow_{c+1} (t)$$
$$\uparrow_{c} (t_{1} t_{2}) = \uparrow_{c} (t_{1}) \uparrow_{c} (t_{2})$$

$$[j \mapsto s]k = \begin{cases} s & \text{if } k = j \\ k & \text{otherwise} \end{cases}$$
$$[j \mapsto s](\lambda t) = \lambda [j + 1 \mapsto \uparrow_0 (s)]t$$
$$[j \mapsto s](t_1 t_2) = ([j \mapsto s]t_1) ([j \mapsto s]t_2)$$

Generalized Shifting

$$\uparrow_{c}^{d}(k) = \begin{cases} k & \text{if } k < c \\ k + d & \text{if } k \ge c \end{cases}$$
$$\uparrow_{c}^{d}(\lambda, t) = \lambda \cdot \uparrow_{c+1}^{d}(t)$$
$$\uparrow_{c}^{d}(t_{1}, t_{2}) = \uparrow_{c}^{d}(t_{1}) \uparrow_{c}^{d}(t_{2})$$

Evaluation of de Bruijn Terms

The evaluation rule we want is

$$\overline{(\lambda. t_{12}) v_2 \rightarrow \uparrow_0^{-1} ([0 \mapsto \uparrow_0^1 (v_2)]t_{12})} \text{ E-APPABS}$$

Evaluation of de Bruijn Terms

The evaluation rule we want is

$$\overline{(\lambda, t_{12}) v_2 \rightarrow \uparrow_0^{-1} ([0 \mapsto \uparrow_0^1 (v_2)] t_{12})} \text{ E-APPABS}$$

Consider this example. Let's say our context is $\Gamma = z, y, x$.

$$db_{\Gamma}((\lambda w. w x y) x y z) = (\lambda. 0 1 2) 0 1 2$$

$$\rightarrow (\uparrow_{0}^{-1} ([0 \mapsto \uparrow_{0}^{1} (0)](0 1 2))) 1 2$$

$$= (\uparrow_{0}^{-1} ([0 \mapsto 1](0 1 2))) 1 2$$

$$= (\uparrow_{0}^{-1} (1 1 2)) 1 2$$

$$= db_{\Gamma}(x x y y z)$$