Nameless Representation of Terms
 CIS500: Software Foundations

First, some review ...

A Proof on λ-Terms

Proof (1)

We want to prove that if

$$
z \in F V([x \mapsto v] u)
$$

then

$$
z \in(F V(u) \backslash\{x\}) \cup F V(v)
$$

In other words,

$$
F V([x \mapsto v] u) \subseteq(F V(u) \backslash\{x\}) \cup F V(v)
$$

Proof by induction on the structure of u.

Proof (2)

Case $u=x$: Then $[x \mapsto v] u=v$, and

$$
F V(v) \subseteq F V(u) \backslash\{x\} \cup F V(v)
$$

Case $u=y$, where $y \neq x$: Then $[x \mapsto v] u=y$, and

$$
\begin{aligned}
F V(u) & =F V(y) \\
& =\{y\} \\
& \subseteq(\{y\} \backslash\{x\}) \cup F V(v) \\
& =(F V(u) \backslash\{x\}) \cup F V(v)
\end{aligned}
$$

Proof (3)

Case $u=\lambda y$. t, where $y \neq x$: Then

$$
[x \mapsto v] u=\lambda y .[x \mapsto v] t
$$

By the $\mathrm{IH}, F V([x \mapsto v] t) \subseteq(F V(t) \backslash\{x\}) \cup F V(v)$. So

$$
\begin{aligned}
F V([x \mapsto v] u) & =F V(\lambda y \cdot[x \mapsto v] t) \\
& =F V([x \mapsto v] t) \backslash\{y\} \\
& \subseteq((F V(t) \backslash\{x\}) \cup F V(v)) \backslash\{y\} \\
& \subseteq(F V(t) \backslash\{x\} \backslash\{y\}) \cup F V(v) \\
& =(F V(t) \backslash\{y\} \backslash\{x\}) \cup F V(v) \\
& =(F V(u) \backslash\{x\}) \cup F V(v)
\end{aligned}
$$

Case $u=t_{1} t_{2}$: Exercise.

Now on to the main topic ...

Nameless Representation of Terms

Representing Terms

Choosing a concrete way to represent terms is necessary when using computers to work with λ-terms.
© Implementing programming language evaluators.
6 Writing machine-checkable definitions and proofs of theorems.

Variable Capture

$$
[x \mapsto \lambda y \cdot z](\lambda z \cdot x) \neq \lambda z . \lambda y . z
$$

How can we be sure that our implementation doesn't make this mistake?

Idea: Rename During Substitution

Rename z to z^{\prime} before applying substitution.

$$
[x \mapsto \lambda y \cdot z](\lambda z \cdot x)=\lambda z^{\prime} \cdot \lambda y . z
$$

Idea: "Barendregt Convention"

We can make sure our terms never use the same variable name twice. So we must always start with

$$
[x \mapsto \lambda y \cdot z]\left(\lambda z^{\prime} \cdot x\right)
$$

Idea: "Barendregt Convention"

We can make sure our terms never use the same variable name twice. So we must always start with

$$
[x \mapsto \lambda y . z]\left(\lambda z^{\prime} \cdot x\right)
$$

But then what happens here?

$$
[x \mapsto \lambda y \cdot z](\lambda z \cdot x x)
$$

More Extreme Proposals

Explicit Substitutions: Make substitutions part of the syntax and encode renaming into the evaluation rules.

Combinators: Find a language with applications but no variables or binding, and translate terms to this langauge.

Devise Canonical Representation

Maybe we can think of a unique representation for α-equivalent terms.

Devise Canonical Representation

Maybe we can think of a unique representation for α-equivalent terms.
For

$$
\lambda x . \lambda y . x(y x)
$$

we could write

$$
\lambda . \lambda .1(01)
$$

© Is this representation unique?

Devise Canonical Representation

Maybe we can think of a unique representation for α-equivalent terms.
For

$$
\lambda x . \lambda y . x(y x)
$$

we could write

$$
\lambda . \lambda .1(01)
$$

© Is this representation unique?
6 What about free variables?

Formal Definition of de Bruijn Terms

We will define a family of sets \mathcal{T}_{n} so that the set \mathcal{T}_{i} can represent terms with at most i free variables.

$$
\frac{0 \leq k<n}{k \in \mathcal{T}_{n}} \quad \frac{t \in \mathcal{T}_{n} \quad n>0}{\lambda . t \in \mathcal{T}_{n-1}}
$$

$$
\frac{t_{1} \in \mathcal{T}_{n} \quad t_{2} \in \mathcal{T}_{n}}{\left(t_{1} t_{2}\right) \in \mathcal{T}_{n}}
$$

Free Variables

What do we do with y ?

$$
\lambda x . y x
$$

Free Variables

What do we do with y ?

$$
\lambda x . y x
$$

We need some sort of context of definitions, for example

$$
\Gamma=x \mapsto 4, y \mapsto 3, z \mapsto 2, a \mapsto 1, b \mapsto 0
$$

Then we should be able to define a function $d b_{\Gamma}$, such that

$$
d b_{\Gamma}(x(y z))=4(32) \quad d b_{\Gamma}(\lambda x . y x)=\lambda .40
$$

Naming Contexts

Let's simplify Γ to be a sequence of variable names.

$$
\Gamma=x_{n-1}, \ldots, x_{1}, x_{0}
$$

Then we'll define

$$
\operatorname{dom}(\Gamma)=\left\{x_{n-1}, \ldots, x_{1}, x_{0}\right\}
$$

And
$\Gamma(x)=$ rightmost index of x in Γ

Converting to Nameless Representation

$$
\begin{aligned}
d b_{\Gamma}(x) & =\Gamma(x) \\
d b_{\Gamma}(\lambda x . t) & =\lambda . d b_{\Gamma, x}(t) \\
d b_{\Gamma}\left(t_{1} t_{2}\right) & =d b_{\Gamma}\left(t_{1}\right) d b_{\Gamma}\left(t_{2}\right)
\end{aligned}
$$

Converting to Nameless Representation

$$
\begin{aligned}
d b_{\Gamma}(x) & =\Gamma(x) \\
d b_{\Gamma}(\lambda x . t) & =\lambda . d b_{\Gamma, x}(t) \\
d b_{\Gamma}\left(t_{1} t_{2}\right) & =d b_{\Gamma}\left(t_{1}\right) d b_{\Gamma}\left(t_{2}\right)
\end{aligned}
$$

What is the type of $d b_{\Gamma}$?

Converting to Nameless Representation

$$
\begin{aligned}
d b_{\Gamma}(x) & =\Gamma(x) \\
d b_{\Gamma}(\lambda x . t) & =\lambda . d b_{\Gamma, x}(t) \\
d b_{\Gamma}\left(t_{1} t_{2}\right) & =d b_{\Gamma}\left(t_{1}\right) d b_{\Gamma}\left(t_{2}\right)
\end{aligned}
$$

What is the type of $d b_{\Gamma}$?

$$
d b_{\Gamma}: \mathcal{T}_{\lambda} \rightarrow \mathcal{T}_{l e n(\Gamma)}
$$

Conversion Example

We will work with $\Gamma=x, y, z$ and will convert the term

$$
\lambda x . y x
$$

Then we have

$$
\begin{aligned}
d b_{x, y, z}(\lambda x . y x) & =\lambda \cdot d b_{x, y, z, x}(y x) \\
& =\lambda \cdot d b_{x, y, z, x}(y) d b_{x, y, z, x}(x) \\
& =\lambda \cdot 20
\end{aligned}
$$

Defining Substitution

Substitution on Nameless Terms

We must define

$$
[k \mapsto s] t
$$

for terms in \mathcal{T}_{n}. But how?

Substitution on Nameless Terms

We must define

$$
[k \mapsto s] t
$$

for terms in \mathcal{T}_{n}. But how? We want to guarantee

$$
d b_{\Gamma}([x \mapsto s] t)=\left[\Gamma(x) \mapsto d b_{\Gamma}(s)\right] d b_{\Gamma}(t)
$$

for all Γ such that

$$
F V(s) \cup F V(t) \cup\{x\} \subseteq \operatorname{dom}(\Gamma)
$$

First Attempt

$$
\begin{aligned}
{[j \mapsto s] k } & = \begin{cases}s & \text { if } k=j \\
k & \text { otherwise }\end{cases} \\
{[j \mapsto s](\lambda . t) } & =\lambda \cdot[j \mapsto s] t \\
{[j \mapsto s]\left(t_{1} t_{2}\right) } & =\left([j \mapsto s] t_{1}\right)\left([j \mapsto s] t_{2}\right)
\end{aligned}
$$

Counter-Example

$$
[x \mapsto \lambda z . z](x(\lambda y . y))
$$

Let $\Gamma=x$.

$$
\begin{aligned}
d b_{\Gamma}([x \mapsto \lambda z . z](x(\lambda y . y))) & =d b_{\Gamma}((\lambda z . z)(\lambda y \cdot y)) \\
& =(\lambda \cdot 0)(\lambda \cdot 0)
\end{aligned}
$$

but

$$
\begin{aligned}
{\left[\Gamma(x) \mapsto d b_{\Gamma}(\lambda z . z)\right] d b_{\Gamma}(x(\lambda y . y)) } & =[0 \mapsto \lambda .0](0(\lambda .0)) \\
& =(\lambda .0)(\lambda .[0 \mapsto \lambda .0] 0) \\
& =(\lambda .0)(\lambda . \lambda .0)
\end{aligned}
$$

Second Attempt

$$
\begin{aligned}
{[j \mapsto s] k } & = \begin{cases}s & \text { if } k=j \\
k & \text { otherwise }\end{cases} \\
{[j \mapsto s](\lambda . t) } & =\lambda .[j+1 \mapsto s] t \\
{[j \mapsto s]\left(t_{1} t_{2}\right) } & =\left([j \mapsto s] t_{1}\right)\left([j \mapsto s) t_{2}\right)
\end{aligned}
$$

Counter-Example

$$
[x \mapsto \lambda y . w] \lambda z . x
$$

Let $\Gamma=x, w$.

$$
\begin{aligned}
d b_{\Gamma}([x \mapsto \lambda y \cdot w] \lambda z \cdot x) & =d b_{\Gamma}(\lambda z \cdot \lambda y \cdot w) \\
& =\lambda \cdot d b_{\Gamma, z}(\lambda y \cdot w) \\
& =\lambda \cdot \lambda \cdot d b_{\Gamma, z, y}(w) \\
& =\lambda \cdot \lambda \cdot 2
\end{aligned}
$$

but

$$
\begin{aligned}
{\left[\Gamma(x) \mapsto d b_{\Gamma}(\lambda y . w)\right] d b_{\Gamma}(\lambda z . x) } & =[1 \mapsto \lambda .1] \lambda .2 \\
& =\lambda \cdot[2 \mapsto \lambda \cdot 1] 2 \\
& =\lambda . \lambda .1
\end{aligned}
$$

Third Attempt (Shifting)

$$
\begin{aligned}
\uparrow(k) & =k+1 \\
\uparrow(\lambda \cdot t) & =\lambda \cdot \uparrow(t) \\
\uparrow\left(t_{1} t_{2}\right) & =\uparrow\left(t_{1}\right) \uparrow\left(t_{2}\right) \\
{[j \mapsto s] k } & = \begin{cases}s & \text { if } k=j \\
k & \text { otherwise }\end{cases} \\
{[j \mapsto s](\lambda . t)=} & \lambda .[j+1 \mapsto \uparrow(s)] t \\
{[j \mapsto s]\left(t_{1} t_{2}\right) } & =\left([j \mapsto s] t_{1}\right)\left([j \mapsto s] t_{2}\right)
\end{aligned}
$$

Counter-Example

$$
[x \mapsto \lambda y \cdot w y] \lambda z \cdot x
$$

Let $\Gamma=x, w$.

$$
\begin{aligned}
d b_{\Gamma}([x \mapsto \lambda y \cdot w y] \lambda z \cdot x) & =d b_{\Gamma}(\lambda z \cdot \lambda y \cdot w y) \\
& =\lambda \cdot \lambda \cdot d b_{\Gamma, z, y}(w y) \\
& =\lambda \cdot \lambda \cdot 20
\end{aligned}
$$

but

$$
\begin{aligned}
& {\left[\Gamma(x) \mapsto d b_{\Gamma}(\lambda y . w y)\right] d b_{\Gamma}(\lambda z . x)=[1 \mapsto \lambda .10] \lambda .2} \\
& =\lambda .[2 \mapsto \uparrow(\lambda .10)] 2 \\
& =\lambda .[2 \mapsto \lambda .21] 2 \\
& =\lambda . \lambda .21
\end{aligned}
$$

Third Attempt (Shifting with Cut-Off)

$$
\left.\begin{array}{rl}
\uparrow_{c}(k) & = \begin{cases}k & \text { if } k<c \\
k+1 & \text { if } k \geq c\end{cases} \\
\uparrow_{c}(\lambda . t) & =\lambda \cdot \uparrow_{c+1}(t) \\
\uparrow_{c}\left(t_{1} t_{2}\right) & =\uparrow_{c}\left(t_{1}\right) \uparrow_{c}\left(t_{2}\right)
\end{array}\right] \begin{array}{ll}
{[j \mapsto s] k} & = \begin{cases}s & \text { if } k=j \\
k & \text { otherwise }\end{cases} \\
{[j \mapsto s](\lambda . t)} & =\lambda \cdot\left[j+1 \mapsto \uparrow_{0}(s)\right] t \\
{[j \mapsto s]\left(t_{1} t_{2}\right)} & =\left([j \mapsto s] t_{1}\right)\left([j \mapsto s] t_{2}\right)
\end{array}
$$

Generalized Shifting

$$
\begin{aligned}
\uparrow_{c}^{d}(k) & = \begin{cases}k & \text { if } k<c \\
k+d & \text { if } k \geq c\end{cases} \\
\uparrow_{c}^{d}(\lambda \cdot t) & =\lambda \cdot \uparrow_{c+1}^{d}(t) \\
\uparrow_{c}^{d}\left(t_{1} t_{2}\right) & =\uparrow_{c}^{d}\left(t_{1}\right) \uparrow_{c}^{d}\left(t_{2}\right)
\end{aligned}
$$

Evaluation of de Bruijn Terms

The evaluation rule we want is

$$
\overline{\left(\lambda . t_{12}\right) v_{2} \rightarrow \uparrow_{0}^{-1}\left(\left[0 \mapsto \uparrow_{0}^{1}\left(v_{2}\right)\right] t_{12}\right)} \text { E-APPABS }
$$

Evaluation of de Bruijn Terms

The evaluation rule we want is

$$
\overline{\left(\lambda . t_{12}\right) v_{2} \rightarrow \uparrow_{0}^{-1}\left(\left[0 \mapsto \uparrow_{0}^{1}\left(v_{2}\right)\right] t_{12}\right)} \text { E-APPABS }
$$

Consider this example. Let's say our context is $\Gamma=z, y, x$.

$$
\begin{aligned}
d b_{\Gamma}((\lambda w . w x y) x y z) & =(\lambda .012) 012 \\
& \rightarrow\left(\uparrow_{0}^{-1}\left(\left[0 \mapsto \uparrow_{0}^{1}(0)\right](012)\right)\right) 12 \\
& =\left(\uparrow_{0}^{-1}([0 \mapsto 1](012))\right) 12 \\
& =\left(\uparrow_{0}^{-1}(112)\right) 12 \\
& =00112 \\
& =d b_{\Gamma}(x x y y z)
\end{aligned}
$$

