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First, some review . . .

A Proof on λ-Terms
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Proof (1)

We want to prove that if

z ∈ FV ([x 7→ v]u)

then
z ∈ (FV (u) \ {x}) ∪ FV (v)

In other words,

FV ([x 7→ v]u) ⊆ (FV (u) \ {x}) ∪ FV (v)

Proof by induction on the structure of u.

Nameless Representation of Terms – p.3/29



Proof (2)

Case u = x: Then [x 7→ v]u = v, and

FV (v) ⊆ FV (u) \ {x} ∪ FV (v)

Case u = y, where y 6= x: Then [x 7→ v]u = y, and

FV (u) = FV (y)

= {y}

⊆ ({y} \ {x}) ∪ FV (v)

= (FV (u) \ {x}) ∪ FV (v)
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Proof (3)

Case u = λy. t, where y 6= x: Then

[x 7→ v]u = λy. [x 7→ v]t

By the IH, FV ([x 7→ v]t) ⊆ (FV (t) \ {x}) ∪ FV (v). So

FV ([x 7→ v]u) = FV (λy. [x 7→ v] t)

= FV ([x 7→ v] t) \ {y}

⊆ ((FV (t) \ {x}) ∪ FV (v)) \ {y}

⊆ (FV (t) \ {x} \ {y}) ∪ FV (v)

= (FV (t) \ {y} \ {x}) ∪ FV (v)

= (FV (u) \ {x}) ∪ FV (v)
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Proof (4)

Case u = t1 t2: Exercise.
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Now on to the main topic . . .

Nameless Representation of
Terms
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Representing Terms

t ::= x

| λx. t

| t1 t2

Choosing a concrete way to represent terms is necessary
when using computers to work with λ-terms.

Implementing programming language evaluators.

Writing machine-checkable definitions and proofs of
theorems.
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Variable Capture

[x 7→ λy. z](λz. x) 6= λz. λy. z

How can we be sure that our implementation doesn’t make
this mistake?
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Idea: Rename During Substitution

Rename z to z′ before applying substitution.

[x 7→ λy. z](λz. x) = λz′. λy. z
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Idea: “Barendregt Convention”

We can make sure our terms never use the same variable
name twice. So we must always start with

[x 7→ λy. z](λz′. x)
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Idea: “Barendregt Convention”

We can make sure our terms never use the same variable
name twice. So we must always start with

[x 7→ λy. z](λz′. x)

But then what happens here?

[x 7→ λy. z](λz. x x)
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More Extreme Proposals

Explicit Substitutions: Make substitutions part of the
syntax and encode renaming into the evaluation rules.

Combinators: Find a language with applications but no
variables or binding, and translate terms to this
langauge.
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Devise Canonical Representation

Maybe we can think of a unique representation for
α-equivalent terms.
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Devise Canonical Representation

Maybe we can think of a unique representation for
α-equivalent terms.
For

λx. λy. x (y x)

we could write
λ. λ. 1 (0 1)

Is this representation unique?
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Devise Canonical Representation

Maybe we can think of a unique representation for
α-equivalent terms.
For

λx. λy. x (y x)

we could write
λ. λ. 1 (0 1)

Is this representation unique?

What about free variables?
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Formal Definition of de Bruijn Terms

We will define a family of sets Tn so that the set Ti can
represent terms with at most i free variables.

0 ≤ k < n

k ∈ Tn

t ∈ Tn n > 0
λ.t ∈ Tn−1

t1 ∈ Tn t2 ∈ Tn

(t1 t2) ∈ Tn
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Free Variables

What do we do with y?

λx. y x
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Free Variables

What do we do with y?

λx. y x

We need some sort of context of definitions, for example

Γ = x 7→ 4, y 7→ 3, z 7→ 2, a 7→ 1, b 7→ 0

Then we should be able to define a function dbΓ, such that

dbΓ(x (y z)) = 4 (3 2) dbΓ(λx. y x) = λ. 4 0
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Naming Contexts

Let’s simplify Γ to be a sequence of variable names.

Γ = xn−1, . . . , x1, x0

Then we’ll define

dom(Γ) = {xn−1, . . . , x1, x0}

And
Γ(x) = rightmost index of x in Γ
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Converting to Nameless
Representation

dbΓ(x) = Γ(x)

dbΓ(λx. t) = λ.dbΓ,x(t)

dbΓ(t1 t2) = dbΓ(t1) dbΓ(t2)
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Converting to Nameless
Representation

dbΓ(x) = Γ(x)

dbΓ(λx. t) = λ.dbΓ,x(t)

dbΓ(t1 t2) = dbΓ(t1) dbΓ(t2)

What is the type of dbΓ?
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Converting to Nameless
Representation

dbΓ(x) = Γ(x)

dbΓ(λx. t) = λ.dbΓ,x(t)

dbΓ(t1 t2) = dbΓ(t1) dbΓ(t2)

What is the type of dbΓ?

dbΓ : Tλ → Tlen(Γ)
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Conversion Example

We will work with Γ = x, y, z and will convert the term

λx. y x

Then we have

dbx,y,z(λx. y x) = λ. dbx,y,z,x(y x)

= λ. dbx,y,z,x(y) dbx,y,z,x(x)

= λ. 2 0
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Defining Substitution
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Substitution on Nameless Terms

We must define
[k 7→ s]t

for terms in Tn. But how?
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Substitution on Nameless Terms

We must define
[k 7→ s]t

for terms in Tn. But how? We want to guarantee

dbΓ([x 7→ s]t) = [Γ(x) 7→ dbΓ(s)]dbΓ(t)

for all Γ such that

FV (s) ∪ FV (t) ∪ {x} ⊆ dom(Γ)
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First Attempt

[j 7→ s]k =

{

s if k = j

k otherwise

[j 7→ s](λ.t) = λ. [j 7→ s]t

[j 7→ s](t1 t2) = ([j 7→ s]t1) ([j 7→ s]t2)
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Counter-Example

[x 7→ λz. z](x (λy. y))

Let Γ = x.

dbΓ([x 7→ λz. z](x (λy. y))) = dbΓ((λz. z) (λy. y))

= (λ. 0) (λ. 0)

but

[Γ(x) 7→ dbΓ(λz. z)]dbΓ(x (λy. y)) = [0 7→ λ. 0](0 (λ.0))

= (λ. 0) (λ. [0 7→ λ. 0]0)

= (λ. 0) (λ. λ. 0)
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Second Attempt

[j 7→ s]k =

{

s if k = j

k otherwise

[j 7→ s](λ.t) = λ. [j + 1 7→ s]t

[j 7→ s](t1 t2) = ([j 7→ s]t1) ([j 7→ s]t2)
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Counter-Example

[x 7→ λy. w]λz. x

Let Γ = x,w.

dbΓ([x 7→ λy. w]λz. x) = dbΓ(λz. λy. w)

= λ. dbΓ,z(λy. w)

= λ. λ. dbΓ,z,y(w)

= λ. λ. 2

but

[Γ(x) 7→ dbΓ(λy. w)]dbΓ(λz. x) = [1 7→ λ. 1]λ. 2

= λ. [2 7→ λ. 1]2

= λ. λ. 1
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Third Attempt (Shifting)

↑ (k) = k + 1

↑ (λ. t) = λ. ↑ (t)

↑ (t1 t2) = ↑ (t1) ↑ (t2)

[j 7→ s]k =

{

s if k = j

k otherwise

[j 7→ s](λ.t) = λ. [j + 1 7→↑ (s)]t

[j 7→ s](t1 t2) = ([j 7→ s]t1) ([j 7→ s]t2)
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Counter-Example

[x 7→ λy. w y]λz. x

Let Γ = x,w.

dbΓ([x 7→ λy. w y]λz. x) = dbΓ(λz. λy. w y)

= λ. λ. dbΓ,z,y(w y)

= λ. λ. 2 0

but

[Γ(x) 7→ dbΓ(λy. w y)]dbΓ(λz. x) = [1 7→ λ. 1 0]λ. 2

= λ. [2 7→↑ (λ. 1 0)]2

= λ. [2 7→ λ. 2 1]2

= λ. λ. 2 1
Nameless Representation of Terms – p.26/29



Third Attempt (Shifting with Cut-Off)

↑c (k) =

{

k if k < c

k + 1 if k ≥ c

↑c (λ. t) = λ. ↑c+1 (t)

↑c (t1 t2) = ↑c (t1) ↑c (t2)

[j 7→ s]k =

{

s if k = j

k otherwise

[j 7→ s](λ.t) = λ. [j + 1 7→↑0 (s)]t

[j 7→ s](t1 t2) = ([j 7→ s]t1) ([j 7→ s]t2)
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Generalized Shifting

↑d
c (k) =

{

k if k < c

k + d if k ≥ c

↑d
c (λ. t) = λ. ↑d

c+1 (t)

↑d
c (t1 t2) = ↑d

c (t1) ↑d
c (t2)
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Evaluation of de Bruijn Terms

The evaluation rule we want is

(λ. t12) v2 →↑−1
0 ([0 7→↑1

0 (v2)]t12)
E-APPABS
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Evaluation of de Bruijn Terms

The evaluation rule we want is

(λ. t12) v2 →↑−1
0 ([0 7→↑1

0 (v2)]t12)
E-APPABS

Consider this example. Let’s say our context is Γ = z, y, x.

dbΓ((λw. w x y) x y z) = (λ. 0 1 2) 0 1 2

→ (↑−1
0 ([0 7→↑1

0 (0)](0 1 2))) 1 2

= (↑−1
0 ([0 7→ 1](0 1 2))) 1 2

= (↑−1
0 (1 1 2)) 1 2

= 0 0 1 1 2

= dbΓ(x x y y z)
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