CIS 500:

An ML Implementation of the λ-Calculus

Chapter 7 of TAPL

5 October 2005

Today

- Finished up ideas behind de Bruijn indices
- Cover de Bruijn-based implementation of the λ-calculus
- Question: Why use de Bruijn indices in an implementation?

Today

- Finished up ideas behind de Bruijn indices
- Cover de Bruijn-based implementation of the λ-calculus
- Question: Why use de Bruijn indices in an implementation?
- Answer: Can be easier to make your implementation correct (no need to fiddle with names).

The datatype for λ-terms

Recall the grammar of the λ-calculus:

$$
\begin{aligned}
\mathrm{t}::= & \mathrm{x} & & \text { variables } \\
& \mathrm{t}_{1} \mathrm{t}_{2} & & \text { application } \\
& \lambda \mathrm{x} . \mathrm{t} & & \text { abstraction }
\end{aligned}
$$

The corresponding OCaml datatype:

type term	$=$
TmVar of	int
\| TmApp of	term $*$ term
\| TmAbs of	

The datatype for λ-terms

Recall the grammar of the λ-calculus:

$$
\begin{aligned}
\mathrm{t}::= & \mathrm{x} & & \text { variables } \\
& \mathrm{t}_{1} \mathrm{t}_{2} & & \text { application } \\
& \lambda \mathrm{x} . \mathrm{t} & & \text { abstraction }
\end{aligned}
$$

The corresponding OCaml datatype:

```
type term =
    TmVar of info * int
    | TmApp of info * term * term
    | TmAbs of info * term
```

Take 2: Include information for error messages.

The datatype for λ-terms

Recall the grammar of the λ-calculus:

$$
\begin{aligned}
\mathrm{t}::= & \mathrm{x} & & \text { variables } \\
& \mathrm{t}_{1} \mathrm{t}_{2} & & \text { application } \\
& \lambda \mathrm{x} . \mathrm{t} & & \text { abstraction }
\end{aligned}
$$

The corresponding OCaml datatype:

```
type term =
    TmVar of info * int * int
    | TmApp of info * term * term
    | TmAbs of info * term
```

Take 3: Keep track of context size as sanity check.

The datatype for λ-terms

Recall the grammar of the λ-calculus:

$$
\begin{aligned}
\mathrm{t}::= & \mathrm{x} & & \text { variables } \\
& \mathrm{t}_{1} \mathrm{t}_{2} & & \text { application } \\
& \lambda \mathrm{x.t} & & \text { abstraction }
\end{aligned}
$$

The corresponding OCaml datatype:

```
type term =
    TmVar of info * int * int
    | TmApp of info * term * term
    | TmAbs of info * string * term
```

Final version: Add in information for printing.

Other pieces of code we need

We're aiming to build an interpreter that evaluates terms.

We still need to handle:

- small-step evaluation
- substitution
- shifting indices
- lexing, parsing, printing

We will ignore lexing, parsing, and printing.

Shifting indices

What's being computed: termShift $d t=\uparrow_{0}^{d}(t)$
let termShift d t =
let rec walk c $\mathrm{t}=$ match t with
$\mid \operatorname{TmVar}(f i, x, n) \rightarrow$
if $\mathrm{x}>=\mathrm{c}$ then $\operatorname{TmVar}(\mathrm{fi}, \mathrm{x}+\mathrm{d}, \mathrm{n}+\mathrm{d})$
else TmVar (fi,x,n+d)
| TmAbs(fi,x,t1) \rightarrow
TmAbs(fi, x, walk ($\mathrm{c}+1$) t1)
| TmApp(fi,t1,t2) \rightarrow
TmApp(fi, walk c t1, walk c t2)
in
walk 0 t

Shifting indices

A closer look: walk c t $=\uparrow_{c}^{d}(\mathrm{t})$
let termShift d t =
let rec walk c t = match t with
$\mid \operatorname{TmVar}(f i, x, n) \rightarrow$
if $x>=c$ then $\operatorname{TmVar}(f i, x+d, n+d)$
else TmVar (fi,x,n+d)
| TmAbs(fi,x,t1) \rightarrow
TmAbs (fi, x, walk ($c+1$) t1)
| TmApp(fi,t1,t2) \rightarrow
TmApp(fi, walk c t1, walk c t2)
in
walk 0 t

Shifting indices

Note: For variables, take into account the context.
let termShift d t =
let rec walk c $\mathrm{t}=$ match t with
$\mid \operatorname{TmVar}(f i, x, n) \rightarrow$
if $x>=c$ then $\operatorname{TmVar}(f i, x+d, n+d)$
else TmVar (fi,x,n+d)
| TmAbs(fi,x,t1) \rightarrow
TmAbs(fi, x, walk ($c+1$) t1)
| TmApp(fi,t1,t2) \rightarrow
TmApp(fi, walk c t1, walk c t2)
in
walk 0 t

Defining substitution

What's being computed: termSubst jst $=[j \mapsto s] t$.

```
let termSubst j s t =
    let rec walk c t = match t with
        TmVar(fi,x,n) }
            if x=j+c then termShift c s
            else TmVar(fi,x,n)
    | TmAbs(fi,x,t1) }
        TmAbs(fi, x, walk (c+1) t1)
    | TmApp(fi,t1,t2) }
        TmApp(fi, walk c t1, walk c t2)
    in
        walk O t
```


Defining substitution

Note: All the shifting is done in the TmVar case.

```
let termSubst j s t =
    let rec walk c t = match t with
            TmVar(fi,x,n)}
                if x=j+c then termShift c s
            else TmVar(fi,x,n)
    | TmAbs(fi,x,t1) }
        TmAbs(fi, x, walk (c+1) t1)
    | TmApp(fi,t1,t2) }
        TmApp(fi, walk c t1, walk c t2)
    in
        walk 0 t
```


Wrapping up substitution

Recall that for evaluation, we only need substitution in the rule

$$
\begin{equation*}
(\lambda . \mathrm{t}) \mathrm{v} \quad \longrightarrow \quad \uparrow^{-1}\left(\left[0 \mapsto \uparrow^{1}(\mathrm{v})\right] \mathrm{t}\right) \tag{E-AppAbs}
\end{equation*}
$$

We can provide a simple wrapper for this special case:

```
(* Substitute v for 0 in t. *)
let termSubstTop v t =
    termShift (-1) (termSubst 0 (termShift 1 v) t)
```


Values

Testing for a value is straightforward.

```
let rec isval ctx t = match t with
    TmAbs(_,_,_) -> true
    | _ -> false
```

A few observations:

- Could use just let instead of let rec.
- ctx argument is unused. It's included for comparison against interpreters for larger languages.

Defining one-step evaluation

Try the rules in order: E-AppAbs, E-App2, E-App1.

```
let rec eval1 ctx \(\mathrm{t}=\) match t with
    TmApp(fi,TmAbs(_, x,t12),v2) when isval ctx v2 \(\rightarrow\)
        termSubstTop v2 t12
| TmApp(fi,v1,t2) when isval ctx v1 \(\rightarrow\)
    let t2' = eval1 ctx t2 in
    TmApp(fi,v1,t2')
\(\mid\) TmApp(fi,t1,t2) \(\rightarrow\)
    let t1' = eval1 ctx t1 in
    TmApp(fi,t1',t2)
| _ \(\rightarrow\)
    raise NoRuleApplies
```


The end

- First midterm is one week from today (October 12).
- Everything up through this lecture may be on the exam.
- For Monday's lecture: Please bring questions!
- Look out for annoucements concerning new office hours.
- Any questions?

