
CIS 500:
An ML Implementation of the λ-Calculus

Chapter 7 of TAPL

5 October 2005



Today

I Finished up ideas behind de Bruijn indices
I Cover de Bruijn-based implementation of the λ-calculus

I Question: Why use de Bruijn indices in an implementation?

I Answer: Can be easier to make your implementation correct
(no need to fiddle with names).

2



Today

I Finished up ideas behind de Bruijn indices
I Cover de Bruijn-based implementation of the λ-calculus

I Question: Why use de Bruijn indices in an implementation?
I Answer: Can be easier to make your implementation correct

(no need to fiddle with names).

3



The datatype for λ-terms

Recall the grammar of the λ-calculus:

t ::= x variables
t1 t2 application
λx.t abstraction

The corresponding OCaml datatype:

type term =
TmVar of

info *

int

* int

| TmApp of

info *

term * term
| TmAbs of

info * string *

term

4



The datatype for λ-terms

Recall the grammar of the λ-calculus:

t ::= x variables
t1 t2 application
λx.t abstraction

The corresponding OCaml datatype:

type term =
TmVar of info * int

* int

| TmApp of info * term * term
| TmAbs of info *

string *

term

Take 2: Include information for error messages.

5



The datatype for λ-terms

Recall the grammar of the λ-calculus:

t ::= x variables
t1 t2 application
λx.t abstraction

The corresponding OCaml datatype:

type term =
TmVar of info * int * int

| TmApp of info * term * term
| TmAbs of info *

string *

term

Take 3: Keep track of context size as sanity check.

6



The datatype for λ-terms

Recall the grammar of the λ-calculus:

t ::= x variables
t1 t2 application
λx.t abstraction

The corresponding OCaml datatype:

type term =
TmVar of info * int * int

| TmApp of info * term * term
| TmAbs of info * string * term

Final version: Add in information for printing.

7



Other pieces of code we need

We’re aiming to build an interpreter that evaluates terms.

We still need to handle:
I small-step evaluation
I substitution
I shifting indices
I lexing, parsing, printing

We will ignore lexing, parsing, and printing.

8



Shifting indices

What’s being computed: termShift d t = ↑d0 (t)

let termShift d t =
let rec walk c t = match t with

| TmVar(fi,x,n) →
if x >= c then TmVar(fi,x+d,n+d)
else TmVar(fi,x,n+d)

| TmAbs(fi,x,t1) →
TmAbs(fi, x, walk (c+1) t1)

| TmApp(fi,t1,t2) →
TmApp(fi, walk c t1, walk c t2)

in
walk 0 t

9



Shifting indices

A closer look: walk c t = ↑dc (t)

let termShift d t =
let rec walk c t = match t with

| TmVar(fi,x,n) →
if x >= c then TmVar(fi,x+d,n+d)
else TmVar(fi,x,n+d)

| TmAbs(fi,x,t1) →
TmAbs(fi, x, walk (c+1) t1)

| TmApp(fi,t1,t2) →
TmApp(fi, walk c t1, walk c t2)

in
walk 0 t

10



Shifting indices

Note: For variables, take into account the context.

let termShift d t =
let rec walk c t = match t with

| TmVar(fi,x,n) →
if x >= c then TmVar(fi,x+d,n+d)
else TmVar(fi,x,n+d)

| TmAbs(fi,x,t1) →
TmAbs(fi, x, walk (c+1) t1)

| TmApp(fi,t1,t2) →
TmApp(fi, walk c t1, walk c t2)

in
walk 0 t

11



Defining substitution

What’s being computed: termSubst j s t = [j 7→ s]t.

let termSubst j s t =
let rec walk c t = match t with

TmVar(fi,x,n) →
if x=j+c then termShift c s
else TmVar(fi,x,n)

| TmAbs(fi,x,t1) →
TmAbs(fi, x, walk (c+1) t1)

| TmApp(fi,t1,t2) →
TmApp(fi, walk c t1, walk c t2)

in
walk 0 t

12



Defining substitution

Note: All the shifting is done in the TmVar case.

let termSubst j s t =
let rec walk c t = match t with

TmVar(fi,x,n) →
if x=j+c then termShift c s
else TmVar(fi,x,n)

| TmAbs(fi,x,t1) →
TmAbs(fi, x, walk (c+1) t1)

| TmApp(fi,t1,t2) →
TmApp(fi, walk c t1, walk c t2)

in
walk 0 t

13



Wrapping up substitution

Recall that for evaluation, we only need substitution in the rule

(λ.t) v −→ ↑−1
(
[0 7→↑1 (v)]t

)
(E-AppAbs)

We can provide a simple wrapper for this special case:

(* Substitute v for 0 in t. *)
let termSubstTop v t =

termShift (-1) (termSubst 0 (termShift 1 v) t)

14



Values

Testing for a value is straightforward.

let rec isval ctx t = match t with
TmAbs(_,_,_) → true

| _ → false

A few observations:
I Could use just let instead of let rec.
I ctx argument is unused. It’s included for comparison against

interpreters for larger languages.

15



Defining one-step evaluation

Try the rules in order: E-AppAbs, E-App2, E-App1.

let rec eval1 ctx t = match t with
TmApp(fi,TmAbs(_,x,t12),v2) when isval ctx v2 →

termSubstTop v2 t12
| TmApp(fi,v1,t2) when isval ctx v1 →

let t2’ = eval1 ctx t2 in
TmApp(fi,v1,t2’)

| TmApp(fi,t1,t2) →
let t1’ = eval1 ctx t1 in
TmApp(fi,t1’,t2)

| _ →
raise NoRuleApplies

16



The end

I First midterm is one week from today (October 12).
I Everything up through this lecture may be on the exam.
I For Monday’s lecture: Please bring questions!

I Look out for annoucements concerning new office hours.

I Any questions?

17


