
TOP
2004/11/24
page 0

CIS 500 — Software Foundations

Midterm II
Answer key

November 17, 2004

TOP
2004/11/24
page 1

Simply typed lambda-calculus

The following questions refer to the simply typed lambda-calculus with booleans and error. The syntax, typing, and
evaluation rules for this system are given on page 1 of the companion handout.

1. (10 points) Write down the types of each of the following terms. If a term can be given many types,
you should write down the smallest one. If the term does not type check, write NONE.

(a) λx:Bool→Bool→Bool. x true

Type: _____________________________
Answer: (Bool→Bool→Bool) → Bool → Bool

(b) λx:Bool. x x

Type: _____________________________
Answer: NONE. There is no type that can be given to x to allow this term to type check.

(c) λx:Bool→Bool. error x

Type: _____________________________
Answer: (Bool→Bool) → Bool

(d) λx:Bool→Bool. λy:Bool. x y error

Type: _____________________________
Answer: NONE. x y has type Bool and may not be applied.

(e) try (λx:Bool. if x then error else true) with false

Type: _____________________________
Answer: NONE. Both parts of a try term must have the same type.

Grading scheme: Binary. Two points per answer.

1

TOP
2004/11/24
page 2

2. (10 points) Which of the following functions could evaluate to error when applied to a single value of
the appropriate type? Circle YES if there is some argument that could produce error and NO other-
wise.

(a) λx:Bool. if x then true else false

YES NO
Answer: NO, both true and false arguments evaluate without error.

(b) λx:Bool. if x then true else error

YES NO
Answer: YES, when applied to false the result is error.

(c) λx:Bool. λy:Bool. if x then y else error

YES NO
Answer: NO, when applied to a single argument, the result is a lambda term.

(d) λx:Bool→Bool. if (x true) then true else false

YES NO
Answer: YES, when applied to λy:Bool. error.

(e) λx:Bool→Bool. if true then true else (x false)

YES NO
Answer: NO, returns true when applied to any value.

Grading scheme: Binary. Two points per answer.

2

TOP
2004/11/24
page 3

3. (10 points) Suppose this language (the simply-typed lambda calculus with booleans and error, from
page 1 of the companion handout) were extended with tuples, using the following syntax, evaluation
and typing rules:

t ::= ... terms:
{ti

i∈1..n} tuple
t.i projection

v ::= ... values:
{vi

i∈1..n} tuple value

T ::= ... types:
{Ti

i∈1..n} tuple type

{vi
i∈1..n}.j −→ vj (E-PROJTUPLE)

t1 −→ t ′

1

t1.i −→ t ′

1.i
(E-PROJ)

tj −→ t ′

j

{vi
i∈1..j−1,tj,tk

k∈j+1..n} −→ {vi
i∈1..j−1,t ′

j,tk
k∈j+1..n}

(E-TUPLE)

for each i Γ ` ti : Ti

Γ ` {ti
i∈1..n} : {Ti

i∈1..n}
(T-TUPLE)

Γ ` t1 : {Ti
i∈1..n}

Γ ` t1.j : Tj

(T-PROJ)

(a) What additional rules must be added to the operational semantics so that the Progress Theorem
is true? Recall that the Progress Theorem states: If ∅ ` t : T then either t is a value, t is error,
or there exists a t ′ such that t −→ t ′.
Answer:

error.i −→ error (E-PROJERROR)

{vi
i∈1..j−1,error,tk

k∈j+1..n} −→ error (E-TUPLEERROR)

Grading scheme: 2 points per rule. Partial credit given for small errors such as
t1 −→ error

t1.i −→ error

3

TOP
2004/11/24
page 4

(b) Complete the inversion lemma for tuples and projections in this calculus.
If Γ ` {ti

i∈1..n} : R then ...
Answer: R = {Ti

i∈1..n} and for each i, Γ ` ti : Ti.

If Γ ` t.j : R then ...
Answer: Γ ` t : {Ti

i∈1..n} and R = Tj for some 1 ≤ j ≤ n.

Grading scheme: 2 points each.

(c) Complete the canonical forms lemma for tuples in this calculus.
If v is a closed value of type {Ti

i∈1..n} then ...
Answer: v is a tuple of the form {vi

i∈1..n}

Grading scheme: 1 point for general form of a canonical forms lemma. 1 point for stating the correct lemma
exactly. For example, v is a tuple of the form {ti

i∈1..n} was worth 1 point.

4

TOP
2004/11/24
page 5

4. (9 points) In the simply-typed lambda calculus with error, booleans, let and tuples, we can encode
binary sums as a derived form.

inl t1 as T1+T2
def
= {true, (λx:T1. λa:Bool. x)t1, λa:Bool. error}

inr t2 as T1+T2
def
= {false, λa:Bool. error, (λx:T2. λa:Bool. x)t2}

case t of inl x1 ⇒ t1 | inr x2 ⇒ t2
def
=

let y = t in
if y.1 then [x1 7→ (y.2 true)] t1

else [x2 7→ (y.3 true)] t2

The following similar encodings are incorrect. Concisely describe why, using one or two sentences.

(a) inl t1 as T1+T2
def
= {true, t1, error}

inr t2 as T1+T2
def
= {false, error, t2}

case t of inl x1 ⇒ t1 | inr x2 ⇒ t2
def
=

let y = t in
if y.1 then [x1 7→ y.2] t1

else [x2 7→ y.3] t2

Answer: This encoding immediately evaluates to error, so it is impossible to determine whether the first
component of the tuple is true or false.

(b) inl t1 as T1+T2
def
= {true, t1, (λa:Bool. error)}

inr t2 as T1+T2
def
= {false, (λa:Bool. error), t2}

case t of inl x1 ⇒ t1 | inr x2 ⇒ t2
def
=

let y = t in
if y.1 then [x1 7→ y.2] t1

else [x2 7→ y.3] t2

Answer: The encodings of inl and inr don’t produce terms of the same type.

(c) inl t1 as T1+T2
def
= {true, (λa:Bool. t1), (λa:Bool. error)}

inl t2 as T1+T2
def
= {false, (λa:Bool. error), (λa:Bool.t2)}

case t of inl x1 ⇒ t1 | inr x2 ⇒ t2
def
=

let y = t in
if y.1 then [x1 7→ (y.2 true)] t1

else [x2 7→ (y.3 true)] t2

Answer: The expression t1 is only evaluated when the sum is examined, not when it is created. For
example inl error as Bool + Bool should produce an error, but would not with this encoding.

Grading scheme: 3 points each.

5

TOP
2004/11/24
page 6

References

The following questions refer to the simply typed lambda-calculus with references (and Unit, Nat, Bool, and
let). The syntax, typing, and evaluation rules for this system are given on page 3 of the companion handout.

5. (12 points) Evaluating the expression

let x = ref (λn:Nat. 0) in
let y = ref (λn:Nat. (!x) n) in
let z = ref (λn:Nat. (!y) n) in
(!z) 3

beginning in an empty store yields:
Result: 0 Store: l1 7→ λn:Nat. 0

l2 7→ λn:Nat. (!l1) n
l3 7→ λn:Nat. (!l2) n

Fill in the resulting values and final stores (when started with an empty store) for the following terms:

(a) let x = ref 0 in
let y = ref x in
(!y) := 3;
x

Answer:

Result: l1 Store: l1 7→ 3
l2 7→ l1

(b) let x = ref 0 in
let f = ref (λw:Ref Nat. w:= succ (!x)) in
let g = λa:Nat. (x := succ(a); ref a) in

(!f) (g (!x))

Answer:

Result: unit Store: l1 7→ 1
l2 7→ λw:Ref Nat. w:= succ (!l1)
l3 7→ 2

(c) let f = ref (λn:Nat. ref 500) in
f := λn:Nat. if iszero(n) then ref 0

else ref (succ (!((!f) (pred n))));
(!f) 3

Answer:

Result: l5 Store: l1 7→ λn:Nat. if iszero(n) then (ref 0)
else ref (succ (!((!l1)(pred n))))

l2 7→ 0
l3 7→ 1
l4 7→ 2
l5 7→ 3

Grading scheme: One point for the result, three points for the store.

6

TOP
2004/11/24
page 7

6. (8 points) Recall that the preservation theorem for the simply-typed lambda-calculus with references
is stated as follows:

THEOREM [Preservation]: If Γ | Σ ` t : T and Γ | Σ ` µ and t | µ −→ t ′ | µ ′ then, for some Σ ′ ⊇ Σ,
Γ | Σ ′ ` t ′ : T and Γ | Σ ′ ` µ ′.

This theorem must be stated very carefully. Small changes to it can easily make it incorrect. For each of
the FALSE variants of the statement shown below, write down a counter-example that demonstrates
why that statement is incorrect.

For example, the statement:

If Γ | Σ ` t : T and Γ | Σ ` µ and t | µ −→ t ′ | µ ′ then Γ | Σ ` t ′ : T and Γ | Σ ` µ ′.

is false because although ∅ | ∅ ` ref 0 : Ref Nat and ∅ | ∅ ` ∅ and ref 0 | ∅ −→ l | l 7→ 0,

it is not the case that ∅ | ∅ ` l : Ref Nat.

(a) If Γ | Σ ` t : T and t | µ −→ t ′ | µ ′ then, for some Σ ′ ⊇ Σ, Γ | Σ ′ ` t ′ : T and Γ | Σ ′ ` µ ′.
Answer: ∅ | l : Nat ` !l : Nat, and !l | l = true −→ true | l = true.
However, there is no Σ ′ ⊇ l : Nat such that ∅ | Σ ′ ` true : Nat

(b) If Γ | Σ ` t : T and Γ | Σ ` µ and t | µ −→ t ′ | µ ′ then, for all Σ ′ ⊇ Σ, Γ | Σ ′ ` t ′ : T and
Γ | Σ ′ ` µ ′.
Answer: ∅ | ∅ ` ref 0 : Ref Nat, and ∅ | ∅ ` ∅ and ref 0 | ∅ −→ l | l = Ref Nat.
However, it is not the case that an arbitrary extension Σ of the empty context ∅ will allow the derivation
of ∅ | Σ ` l : Ref Nat, only those extensions that map l to Nat.

Grading scheme: Each part worth four points. 0 pts for a blank answer, 1 point if realized the statement was
false, 2 points if realized a counterexample was needed, 3 points if the counterexample was almost correct and 4
points for producing a valid counterexample.

7

TOP
2004/11/24
page 8

7. (21 points) Intuitively, type soundness for a language states that if a closed term is well-typed and
evaluates (using multi-step evaluation) to a normal form, that normal form will be a value. In other
words, closed well-typed terms will not get stuck. We can state this idea precisely for the language
with references in the following manner:

THEOREM [Type Soundness]: If ∅ | Σ ` t : T and ∅ | Σ ` µ and t | µ −→
∗ t ′ | µ ′ and t ′ | µ ′ 6−→,

then t ′ is a value.

Recall also to the progress theorem for the simply-typed lambda calculus with references:

THEOREM [Progress]: If ∅ | Σ ` t : T and ∅ | Σ ` µ then either t is a value, or else, for any µ such
that ∅ | Σ ` µ, there is some term t ′ and store µ ′ such that t | µ −→ t ′ | µ ′.

(a) Given the following definition of multi-step evaluation t | µ −→
∗ t ′ | µ ′, prove type soundness

by induction on this derivation using the progress and preservation theorems. Note, your proof
must be concise as well as correct. Extraneous information not necessary for the proof (whether
true or false) will be counted against you.

t | µ −→
∗ t | µ (EV-DONE)

t | µ −→ t ′ | µ ′ t ′ | µ ′ −→
∗ t ′′ | µ ′′

t | µ −→
∗ t ′′ | µ ′′

(EV-STEP)

Answer: Proof is by induction on the derivation of t | µ −→
∗ t ′ | µ ′. In each case we are trying to show

that t ′ is a value.

• case [EV-Done] Suppose t | µ −→
∗ t | µ. In this case t ′ = t and µ ′ = µ. By the progress theorem,

either t is a value or there is some t ′ and µ ′ such that t | µ −→ t ′ | µ ′. However, we know that
t | µ 6−→, so t must be a value.

• case [EV-Step] Suppose that t | µ −→
∗ t ′′ | µ ′′, where t | µ −→ t1 | µ1 and t1 | µ1 −→

∗ t ′′ | µ ′′.
In this case, t ′=t ′′ and µ ′ = µ ′′.
By the preservation theorem, we know that for some Σ ′ ⊇ Σ, ∅ | Σ ′ ` t1 : T and ∅ | Σ ′ ` µ1.
Because we know that t1 and µ1 are well typed, we may apply induction and conclude that t ′′ is a
value.

Grading scheme: The proof was worth 12 points. Roughly, 3 of those points were for setting up the cases
correctly, 3 points for the EV-DONE case and 6 points for the EV-STEP case. Points were deducted for
using the wrong lemma in the wrong case, for using the induction hypothesis incorrectly, for extraneous
information and for minor mistakes or ommissions. No points were awarded for answers that tried to prove
the wrong theorem (such as preservation or progress) and no points were awarded for students who tried
to prove the lemma by induction on the the typing relation or single-step evaluation relation. (Although
it may be possible to develop a convoluted proof in this manner, students who tried this route quickly lost
track of what they were trying to prove.)

8

TOP
2004/11/24
page 9

(b) Suppose we eliminated the typing rule T-LOC from the type system of the simply typed lambda-
calculus with references.

i. Is the preservation theorem still true? If so, give a short explanation why. If not, write down
a counter-example.
Answer: No, because the term ref 0 is well-typed, but it steps to a location l that cannot be typed
without T-LOC.

ii. Is the progress theorem still true? If so, give a short explanation why. If not, write down a
counter-example.
Answer: Yes. Eliminating typing rules does not change the progress theorem. Although fewer closed
terms type check, those that do (and are not values) must still step by the progress theorem of the
original language.

iii. Does type soundness still hold? If so, give a short explanation why. If not, write down a
counter-example.
Answer: Yes. The above proof is not the only way to prove type soundness. In this case, any term that
type checks in the system without T-LOC also type checks in the original system. Type soundness
of the original system specifies that the term must evaluate to a value, which is all that is required
for type soundness to hold for the language without T-LOC. (Note that the value may not be typable
without T-LOC, but that is not required by the type soundness theorem.)

Grading scheme: 1 point for the answer and 2 points for the counterexample or reason. Partial credit awarded
for part iii if part i was wrong and the reason read that “since progress and preservation are still true, type
soundness is still true.”

9

TOP
2004/11/24
page 10

Companion handout

Full definitions of the systems
used in the exam

TOP
2004/11/24
page 1

Simply typed lambda calculus with error (and Bool)

Syntax

t ::= terms
error run-time error
true constant true
false constant false
if t then t else t conditional
x variable
λx:T.t abstraction
t t application

v ::= values
true true value
false false value
λx:T.t abstraction value

T ::= types
T→T type of functions
Bool type of booleans

Γ ::= contexts
∅ empty context
Γ , x:T term variable binding

Evaluation t −→ t ′

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t ′

1

if t1 then t2 else t3 −→ if t ′

1 then t2 else t3

(E-IF)

if error then t2 else t3 −→ error (E-IFERR)

error t2 −→ error (E-APPERR1)

v1 error −→ error (E-APPERR2)

t1 −→ t ′

1

t1 t2 −→ t ′

1 t2

(E-APP1)

t2 −→ t ′

2

v1 t2 −→ v1 t ′

2

(E-APP2)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-APPABS)

1

TOP
2004/11/24
page 2

Typing Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T-VAR)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T-ABS)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T-APP)

Γ `true : Bool (T-TRUE)

Γ `false : Bool (T-FALSE)

Γ `t1 : Bool Γ `t2 : T Γ `t3 : T

Γ `if t1 then t2 else t3 : T
(T-IF)

Γ ` error : T (T-ERROR)

2

TOP
2004/11/24
page 3

Simply typed lambda calculus with references
(and Unit, Nat, Bool, and let)

Syntax

t ::= terms
x variable
let x=t in t let binding
unit constant unit
λx:T.t abstraction
t t application
ref t reference creation
!t dereference
t:=t assignment
l store location
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
unit constant unit
λx:T.t abstraction value
l store location
true true value
false false value
nv numeric value

T ::= types
Unit unit type
T→T type of functions
Ref T type of reference cells
Bool type of booleans
Nat type of natural numbers

µ ::= stores
∅ empty store
µ, l = v location binding

Γ ::= contexts
∅ empty context
Γ , x:T term variable binding

Σ ::= store typings
∅ empty store typing
Σ, l:T location typing

3

TOP
2004/11/24
page 4

nv ::= numeric values
0 zero value
succ nv successor value

Evaluation t | µ −→ t ′ | µ ′

let x=v1 in t2| µ −→ [x 7→ v1]t2| µ (E-LETV)

t1| µ −→ t ′

1| µ ′

let x=t1 in t2| µ −→ let x=t ′

1 in t2| µ ′
(E-LET)

t1 | µ −→ t ′

1 | µ ′

t1 t2 | µ −→ t ′

1 t2 | µ ′
(E-APP1)

t2 | µ −→ t ′

2 | µ ′

v1 t2 | µ −→ v1 t ′

2 | µ ′
(E-APP2)

(λx:T11.t12) v2 | µ −→ [x 7→ v2]t12 | µ (E-APPABS)

l /∈ dom(µ)

ref v1 | µ −→ l | (µ, l 7→ v1)
(E-REFV)

t1 | µ −→ t ′

1 | µ ′

ref t1 | µ −→ ref t ′

1 | µ ′
(E-REF)

µ(l) = v

!l | µ −→ v | µ
(E-DEREFLOC)

t1 | µ −→ t ′

1 | µ ′

!t1 | µ −→ !t ′

1 | µ ′
(E-DEREF)

l:=v2 | µ −→ unit | [l 7→ v2]µ (E-ASSIGN)

t1 | µ −→ t ′

1 | µ ′

t1:=t2 | µ −→ t ′

1:=t2 | µ ′
(E-ASSIGN1)

t2 | µ −→ t ′

2 | µ ′

v1:=t2 | µ −→ v1:=t ′

2 | µ ′
(E-ASSIGN2)

if true then t2 else t3| µ −→ t2| µ (E-IFTRUE)

if false then t2 else t3| µ −→ t3| µ (E-IFFALSE)

t1| µ −→ t ′

1| µ ′

if t1 then t2 else t3| µ −→ if t ′

1 then t2 else t3| µ ′
(E-IF)

t1| µ −→ t ′

1| µ ′

succ t1| µ −→ succ t ′

1| µ ′
(E-SUCC)

pred 0| µ −→ 0| µ (E-PREDZERO)

pred (succ nv1)| µ −→ nv1| µ (E-PREDSUCC)

t1| µ −→ t ′

1| µ ′

pred t1| µ −→ pred t ′

1| µ
(E-PRED)

4

TOP
2004/11/24
page 5

iszero 0| µ −→ true| µ (E-ISZEROZERO)

iszero (succ nv1)| µ −→ false| µ (E-ISZEROSUCC)

t1| µ −→ t ′

1| µ ′

iszero t1| µ −→ iszero t ′

1| µ ′
(E-ISZERO)

Typing Γ | Σ ` t : T

Γ | Σ ` unit : Unit (T-UNIT)

x:T ∈ Γ

Γ | Σ ` x : T
(T-VAR)

Γ , x:T1 | Σ ` t2 : T2

Γ | Σ ` λx:T1.t2 : T1→T2

(T-ABS)

Γ | Σ ` t1 : T11→T12 Γ | Σ ` t2 : T11

Γ | Σ ` t1 t2 : T12

(T-APP)

Σ(l) = T1

Γ | Σ ` l : Ref T1

(T-LOC)

Γ | Σ ` t1 : T1

Γ | Σ ` ref t1 : Ref T1

(T-REF)

Γ | Σ ` t1 : Ref T11

Γ | Σ ` !t1 : T11

(T-DEREF)

Γ | Σ ` t1 : Ref T11 Γ | Σ ` t2 : T11

Γ | Σ ` t1:=t2 : Unit
(T-ASSIGN)

Γ `true : Bool (T-TRUE)

Γ `false : Bool (T-FALSE)

Γ `t1 : Bool Γ `t2 : T Γ `t3 : T

Γ `if t1 then t2 else t3 : T
(T-IF)

Γ `0 : Nat (T-ZERO)

Γ `t1 : Nat

Γ `succ t1 : Nat
(T-SUCC)

Γ `t1 : Nat

Γ `pred t1 : Nat
(T-PRED)

Γ `t1 : Nat

Γ `iszero t1 : Bool
(T-ISZERO)

Γ ` t1 : T1 Γ , x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2

(T-LET)

5

