
CIS 500 — Software Foundations
Homework Assignment 1

Basic OCaml

Due: Monday, September 11, 2006, by noon

Instructions:

• Solutions must be submitted electronically (in ascii, postscript, or PDF format). Follow the
instructions here:

http://www.seas.upenn.edu/∼cis500/homework.html

Submit all of your solutions in a single ML source file. Put your name(s) in a comment at
the top.

• Collaboration on this homework assignment is strongly encouraged. If you work on the assign-
ment with others, please turn in a single set of solutions bearing all of your names. Everyone
will receive the same grade.

• The instructions given in Chapter 2 of Introduction to Objective Caml (see below) should
suffice for learning to interact with the OCaml compiler and “top loop” on SEAS machines.
(Don’t worry if the compiler version numbers don’t match.) If you would like to install
ocaml on your own machine, binaries for various platforms as well as a source distribution
are available here:

http://caml.inria.fr/ocaml/distrib.html

Many Linux distributions and other package managers (Fink on OSX, CygWin on Windows)
offer OCaml packages ready to install. OCaml is also straightforward to build from sources
on most UNIX-like systems if you are accustomed to doing such things; however, we do not
have the resources to help everyone with installing OCaml at home — it’s up to you.



Reading assignment: Before beginning the programming exercises below, read Chapters 1
through 5 of Jason Hickey’s Introduction to Objective Caml. Don’t worry if you find Chapter
5 a little dense—for the moment, all you need from it is the examples of simple list processing
functions.

1 Exercise Write a function oddmembers that takes a list of integers as input and returns a list
containing just the odd members of the original list. For example:

# oddmembers [1;2;3;5;6;8;9];;
: int list = [1; 3; 5; 9]

2 Exercise Write a function interleave2 that takes two lists and returns a new list containing the
members of the first and second lists in alternating order. For example:

# interleave2 [1;2;3;4] [5;6];;
: int list = [1; 5; 2; 6; 3; 4]

3 Exercise Write a function interleave3 that takes three lists as arguments and returns a new list
containing the members of the first, second, and third lists in alternating order. For example:

# interleave3 [1;2;3;4] [5;6] [7;8;9];;
: int list = [1; 5; 7; 2; 6; 8; 3; 9; 4]

4 Exercise Write a function interleaven that takes a list of lists as an argument and returns a new
list containing the members of the sub-lists of this list in alternating order. For example:

# interleaven [ [1;2;3;4]; [5;6]; [7;8;9] ];;
: int list = [1; 5; 7; 2; 6; 8; 3; 9; 4]

5 Exercise The nth Fibonacci number, fibn, is defined recursively as follows: fib0 = 0, fib1 = 1
and for all n ≥ 2, fibn = fibn−1 + fibn−2. Write an OCaml function fib that implements this
algorithm. Try out your function on inputs 7, 20, and 33 (the results should be 13, 6765 and
3524578, repectively).

Even on a very fast machine, you should see a noticeable delay on calculating fib33. Finding
Fibonacci numbers much bigger than this one will take much longer than you are likely to want to
wait.

Write a tail-recursive function fib_tr that also computes the nth Fibonacci number. (Recall
that a tail-recursive function is a recursive function in which there is at most a single recursive call
in each control path, and that recursive call must be the final statement in that control path.) To
write fib_tr, you will need to write a tail-recursive auxiliary function that does all of the real work
and that fib_tr just calls once. Try fib_tr on 7, 20, and 33.



6 Exercise A multiset (sometimes called a bag) is a set where each element may appear any finite
number of times. Write functions that implement basic multiset operations using lists. In particular,
you should write the following functions:

• add x s : returns a new multiset with x added to s (so that the count of x is increased by 1)

• count x s : returns the number of times that x appears as an element of s

• member x s : returns true if x appears at least once in s; false otherwise

• subset s1 s2 : returns true if the count of each element in s1 is less than or equal to its
count in s2, and false otherwise

• union s1 s2 : returns a new multiset that is the union of s1 and s2 (i.e., where the count
of each element is the maximum of its counts in s1 and s2)

• inter s1 s2 : returns a new multiset that is the intersection of s1 and s2 (i.e., where the
count of each element is the minimum of its counts in s1 and s2)

For example:

# add 8 s1;;
- : int list = [8; 1; 2; 2; 3; 3; 3]
# count 9 s1;;
- : int = 0
# count 3 s2;;
- : int = 1
# subset s1 s2;;
- : bool = false
# inter s1 s2;;
- : int list = [2; 2; 3]
# subset (inter s1 s2) s2;;
- : bool = true
# union s1 s2;;
- : int list = [1; 2; 2; 3; 3; 3; 2; 4]

The order in which the elements of a multiset are stored does not matter, so don’t worry if the lists
in your implementation are permutations of the ones here. Also, you do not need to worry about
the efficiency of your solution.

7 Exercise (Optional) Implement your favorite list sorting function in OCaml, using just the fea-
tures we have discussed in class. (For example, try mergesort or quicksort.)



8 Debriefing

1. Approximately how many hours did you spend on this assignment?

2. Would you rate it as easy, moderate, or difficult?

3. How deeply do you feel you understand the material it covers (0%–100%)?

4. Any other comments?

This question is intended to help us calibrate the homework assignments. Your answers will not
affect your grade.


