
CIS 500 — Software Foundations
Homework Assignment 2

More OCaml

Due: Monday, September 18, 2006, by noon

Instructions: Use the same submission procedure as last time, paying attention to the following
points:

• Put all of your solutions together in a single OCaml source file named hw2.ml.

• Submit this file as hw2, for example, using the command:

~cis500/bin/cis500submit hw2 hw2.ml

• Anything that isn’t valid OCaml code should be placed in a comment. We want to be able
to run your file directly.

Reading assignment: Before beginning the programming exercises below, read Chapter 6 of
Jason Hickey’s Introduction to Objective Caml.

1 Exercise Consider the following datatype of tokens:

type token =
Num of int

| Plus
| Minus
| Times
| LParen
| RParen
| If
| Then
| Else
| And
| Or
| Equal

Write a function lex that takes a list of characters as input and produces a list of tokens as output.
Your function should:

• map sequences of digits to appropriate instances of the Num constructor

• map the characters ’+’, ’-’, ’*’, ’=’, ’(’, and ’)’ to Plus, Minus, Times, Equal, LParen,
and RParen, respectively

• map the two-character sequence ’&’;’&’ to the token And, the sequence ’|’;’|’ to the token
Or, the sequence ’i’;’f’ to the token If, the sequence ’t’;’h’;’e’;’n’ to the token Then,
and the sequence ’e’;’l’;’s’;’e’ to the token Else.

• ignore whitespace (the ’ ’ and ’\n’ characters)

• fail (by raising the exception Bad) on all other characters

Examples:

lex [’(’;’1’;’2’;’+’;’3’;’4’;’0’;’)’;’ ’];;
- : token list = [LParen; Num 12; Plus; Num 340; RParen]

lex [’+’;’ ’;’*’];;
- : token list = [Plus; Times]

lex [’if’;’ ’;’5’;’t’;’h’;’e’;’n’];;
- : token list = [If; Num 5; Then]

lex [’a’];;
Exception: Bad.

lex [];;
- : token list = []

lex [’(’;’(’;’1’;’2’;’+’;’3’;’4’;’0’;’)’;’*’;’ ’;’ ’;’\n’;’5’;’)’];;
- : token list =

[LParen; LParen; Num 12; Plus; Num 340; RParen; Times; Num 5; RParen]

2 Exercise Here is a very simple grammar of fully parenthesized arithmetic and boolean expressions
(extending the one we saw in class),

exp ::= n number
(exp + exp) parenthesized sum of expressions
(exp− exp) parenthesized difference of expressions
(exp ∗ exp) parenthesized product of expressions
(exp = exp) parenthesized comparison of expressions
(exp&&exp) parenthesized conjunction of expressions
(exp||exp) parenthesized disjunction of expressions
if exp then exp else exp conditional

and here is a datatype definition representing the corresponding set of abstract syntax trees.

type ast =
ANum of int

| APlus of ast * ast
| AMinus of ast * ast
| ATimes of ast * ast
| AAnd of ast * ast
| AOr of ast * ast
| AEqual of ast * ast
| AIf of ast * ast * ast

Evaluation of such expressions can yield either a number or a boolean; here is a datatype that
captures both of these possibilities:

type value =
Int of int

| Bool of bool

Extend the function eval presented in class so that it deals with the extra constructs introduced
in the grammar above. Your eval function should have type ast -> value.

For example:

eval (AEqual ((ATimes (APlus (ANum 12, ANum 340), ANum 5)), (ANum 1760)));;
- : value = Bool true

eval (AIf (AEqual (ANum 4, ANum 3),
ANum 5,
APlus (ANum 2, ANum 2)));;

- : value = Int 4

3 Exercise Here is a function parse that takes lists of tokens and yield the corresponding ast:

let rec parse l =
let parseToken t l =
match l with
[] -> raise Bad

| x::rest -> if x=t then rest else raise Bad in
match l with
(Num i) :: rest -> (ANum i, rest)

| LParen::rest ->
(let (e1,rest1) = parse rest in
let (op,restop) = match rest1 with o::r -> (o,r) | [] -> raise Bad in
let (e2,rest2) = parse restop in
let e =
match op with
Plus -> APlus(e1,e2)

| Minus -> AMinus(e1,e2)
| Times -> ATimes(e1,e2)
| And -> AAnd(e1,e2)
| Or -> AOr(e1,e2)
| Equal -> AEqual(e1,e2)

| _ -> raise Bad in
match rest2 with
RParen::rest3 -> (e, rest3)

| _ -> raise Bad)
| If::rest ->

(let (e1,rest1) = parse rest in
let rest2 = parseToken Then rest1 in
let (e2,rest3) = parse rest2 in
let rest4 = parseToken Else rest3 in
let (e3,rest5) = parse rest4 in
(AIf(e1,e2,e3), rest5))

| _ -> raise Bad

And here is a function explode that takes a string and returns a list of the characters it contains:

let rec explode s =
match s with
"" -> []

| _ -> (String.get s 0)::
(explode (String.sub s 1 ((String.length s)-1)))

Put all of these pieces together: take the eval function from the previous exercise, the parse and
explode functions above, and your lex function from the first exercise, and write a function calc
that takes a string and returns an integer. If the string represents a valid arithmetic expression,
the calc function should return its value as computed by eval. If it is not a valid expression, it
should raise the exception Bad.
Examples:

calc "((1+2)*3)";;
- : int = Int 9

calc "(1+2) 5";;
Exception: Bad.

calc "((2+1) * (11+8))";;
- : int = Int 57

calc "(3=(1+2))";;
- : value = Bool true

calc "if (3=4) then (3+6) else (5*200)";;
- : value = Int 1000

4 Exercise [Required for all groups (of any size, including 1) containing at least one PhD
student; optional otherwise] Extend your parser to handle unparenthesized expressions, using
the usual rules of precedence (&& and || have lower precedence than =, which has lower precedence
than + and -, which have lower precedence than *) and associativity (1+2+3 means (1+2)+3).

5 Exercise

The exists function takes a predicate p (a one-argument function returning a boolean) and a list
l and checks whether there is some element of l for which p returns true.

exists (fun x -> x >= 3) [2;11;4];;
- : bool = true

exists (fun x -> x >= 3) [1;1;2];;
- : bool = false

Define exists as a recursive function.

6 Exercise Give an alternate definition of exists using fold and without any other use of recursion.

7 Exercise Define map using fold (and without any other use of recursion).

8 Exercise Instead of defining the stream data type as we did in the lecture,

type ’a stream = Stream of ’a * (unit -> ’a stream);;

suppose we defined it like this:

type ’a stream = Stream of (unit -> (’a * ’a stream));;

Under this new definition, a stream does not “pre-compute” its first element. Instead, it waits until
asked to compute anything at all; only then does it compute and return a head element and a new
stream.

Rewrite all of the definitions of stream processing functions and examples (including the sieve
of prime numbers) from the lecture notes so that they work with this new version of streams.

9 Debriefing

1. Approximately how many hours per person (on average) did you spend on this assignment?

2. Would you rate it as easy, moderate, or difficult?

3. How deeply do you feel you understand the material it covers (0%–100%)?

4. Any other comments?

