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Course Overview



What is “software foundations”?

Software foundations (or “theory of programming languages”) is
the mathematical study of the meaning of programs.

The goal is finding ways to describe program behaviors that are
both precise and abstract.

I precise so that we can use mathematical tools to formalize
and check interesting properties

I abstract so that properties of interest can be discussed clearly,
without getting bogged down in low-level details



Why study software foundations?

I To prove specific properties of particular programs (i.e.,
program verification)

I Important in some domains (safety-critical systems, hardware
design, security protocols, inner loops of key algorithms, ...),
but still quite difficult and expensive

I To develop intuitions for informal reasoning about programs

I To prove general facts about all the programs in a given
programming language (e.g., safety or isolation properties)

I To understand language features (and their interactions)
deeply and develop principles for better language design
(PL is the “materials science” of computer science...)



What you can expect to get out of the course

I A more sophisticated perspective on programs, programming
languages, and the activity of programming

I How to view programs and whole languages as formal,
mathematical objects

I How to make and prove rigorous claims about them
I Detailed study of a range of basic language features

I Deep intuitions about key language properties such as type
safety

I Powerful tools for language design, description, and analysis

Most software designers are language designers!



What this course is not

I An introduction to programming (see CIT 591)

I A course on functional programming (though we’ll be doing
some functional programming along the way)

I A course on compilers (you should already have basic
concepts such as lexical analysis, parsing, abstract syntax, and
scope under your belt)

I A comparative survey of many different programming
languages and styles (boring!)

I A seminar on programming language research (see CIS
700/002 MW 1:30-3:00, Towne 307)



Approaches to Program Meaning

I Denotational semantics and domain theory view programs as simple
mathematical objects, abstracting away their flow of control and
concentrating on their input-output behavior.

I Program logics such as Hoare logic and dependent type theories
focus on logical rules for reasoning about programs.

I Operational semantics describes program behaviors by means of
abstract machines. This approach is somewhat lower-level than the
others, but is extremely flexible.

I Process calculi focus on the communication and synchronization
behaviors of complex concurrent systems.

I Type systems describe approximations of program behaviors,
concentrating on the shapes of the values passed between different
parts of the program.



Overview

In this course, we will concentrate on operational techniques and
type systems.

I Part O: Functional Programming
I A taste of OCaml
I Functional programming style
I Implementing programming languages

I Part I: Modelling programming languages
I Syntax and operational semantics
I Inductive proof techniques
I The lambda-calculus
I Syntactic sugar; fully abstract translations



Overview

I Part II: Type systems
I Simple types
I Type safety
I References
I Subtyping

I Part III: Object-oriented features (case study)
I A simple imperative object model
I An analysis of core Java



Administrative Stuff



Personnel

Instructor: Benjamin Pierce
Levine 562
bcpierce@cis.upenn.edu
Office hours: Wed, 3:00–5:00

(subject to change!)

Teaching Assistant: Brian Aydemir

Administrative Assistant: Kamila Dyjas Mauro



Information

Textbook: Types and Programming Languages,
Benjamin C. Pierce, MIT Press, 2002

Webpage: http://www.seas.upenn.edu/∼cis500

Mailing list: To be announced



Exams

1. First mid-term: Wednesday, October 13, in class

2. Second mid-term: Wednesday, November 10, in class

3. Final: Wednesday, December 20, 9–11AM



Grading

Final course grades will be computed as follows:

I Homework: 20%

I 2 midterms: 20% each

I Final: 40%



(Lack of) extra Credit

1. Grade improvements can only be obtained by sitting in on the
course next year and turning in all homeworks and exams.
(If you are doing this to improve your grade from last year,
please speak to me after class so I know who you are.)

2. There will be no extra credit projects, either during the
semester or after the course ends; concentrate your efforts on
this course, now.



Collaboration

I Collaboration on homework is strongly encouraged

I Studying with other people is the best way to internalize the
material

I Form study groups!
2-3 people is a good size. 4 is too many for all to have equal
input.

“You never really misunderstand something
until you try to teach it...”

— Anon.



Homework

Readings from TAPL...

I Should be completed before lecture (see course web page)

I Do all one star questions while reading (no need to turn in)

I Write down questions to ask in class or recitation



Homework

Written homework...

I Small part of your grade, but a large part of your
understanding

I Submit one assignment per study group.

I We will grade a semi-random subset of the problems on each
assignment

I Some solutions are in the back of the book. Write your
answer down before looking

I Late (non-)policy: Homework will not be accepted after the
announced deadline



First Homework Assignment

I The first homework assignment (on basic OCaml
programming) is due next Monday by noon.

I You will need:
I An account on a machine where OCaml is installed (you can

also install OCaml on your own machine if you like)
I Jason Hickey’s notes on OCaml (read chapters 1-5)



Recitations

I There will be both “review” and “advanced” recitations

I Recitations will start next week; they will take place on
Thursdays or Fridays

I The exact schedule will be organized in the next couple of days



The WPE-I

I PhD students in CIS must pass a five-section Written
Preliminary Exam (WPE-I)
Software Foundations is one of the five areas

I The final for this course is also the software foundations
WPE-I exam

I Near the end of the semester, you will be given an opportunity
to declare your intention to take the final exam for WPE credit



The WPE-I (continued)

I You do not need to be enrolled in the course to take the exam
for WPE credit

I If you are enrolled in the course and also take the exam for
WPE credit, you will receive two grades: a letter grade for the
course final and a Pass/Fail for the WPE

I You may take the exam for WPE credit even if you are not
currently enrolled in the PhD program



The WPE-I syllabus

I Reading knowledge of core OCaml

I Chapters 1-11 and 13-19 of TAPL



A Whirlwind Tour of OCaml



OCaml and this course

The material in this course is mostly conceptual and mathematical.

However:

I some of the ideas we will encounter are easier to grasp if you
can “see them work”

I experimenting with small implementations of programming
languages is an excellent way to deepen intuitions

For these purposes, we will use the OCaml language.

OCaml is a large and powerful language. For present purposes,
though, we can concentrate just on the “core” of the language,
ignoring most of its features. In particular, we will not need
modules or objects.



Functional Programming

OCaml is a functional programming language — i.e., a language in
which the functional programming style is the dominant idiom.

Other well-known functional languages include Lisp, Scheme,
Haskell, and Standard ML.



Functional Programming

The functional style can be described as a combination of...

I persistent data structures (which, once built, are never
changed)

I recursion as a primary control structure

I heavy use of higher-order functions (functions that take
functions as arguments and/or return functions as results)

Imperative languages, by contrast, emphasize...

I mutable data structures

I looping rather than recursion

I first-order rather than higher-order programming (though
many object-oriented design patterns involve higher-order
idioms—e.g., Subscribe/Notify, Visitor, etc.)



Computing with Expressions

OCaml is an expression language. A program is an expression. The
“meaning” of the program is the value of the expression.

# 16 + 18;;
- : int = 34

# 2*8 + 3*6;;
- : int = 34



The top level

OCaml provides both an interactive top level and a compiler that
produces standard executable binaries. The top level provides a
convenient way of experimenting with small programs.

The mode of interacting with the top level is typing in a series of
expressions; OCaml evaluates them as they are typed and displays
the results (and their types). In the interaction above, lines
beginning with # are inputs, and lines beginning with - are the
system’s responses. Note that inputs are always terminated by a
double semicolon.



Giving things names

The let construct gives a name to the result of an expression so
that it can be used later.

# let inchesPerMile = 12*3*1760;;
val inchesPerMile : int = 63360

# let x = 1000000 / inchesPerMile;;
val x : int = 15



Functions

# let cube (x:int) = x*x*x;;
val cube : int -> int = <fun>

# cube 9;;
- : int = 729

We call x the parameter of the function cube; the expression
x*x*x is its body. The expression cube 9 is an application of
cube to the argument 9.
The type printed by OCaml, int->int (pronounced “int arrow
int”) indicates that cube is a function that should be applied to
an integer argument and that returns an integer.
Note that OCaml responds to a function declaration by printing
just <fun> as the function’s “value.”



Here is a function with two parameters:

# let sumsq (x:int) (y:int) = x*x + y*y;;
val sumsq : int -> int -> int = <fun>

# sumsq 3 4;;
- : int = 25

The type printed for sumsq is int->int->int, indicating that it
should be applied to two integer arguments and yields an integer
as its result.
Note that the syntax for invoking function declarations in OCaml is
slightly different from languages in the C/C++/Java family: we
write cube 3 and sumsq 3 4 rather than cube(3) and
sumsq(3,4).



The type boolean

There are only two values of type boolean: true and false.
Comparison operations return boolean values.

# 1 = 2;;
- : bool = false

# 4 >= 3;;
- : bool = true

not is a unary operation on booleans.

# not (5 <= 10);;
- : bool = false

# not (2 = 2);;
- : bool = false



Conditional expressions

The result of the conditional expression if B then E1 else E2
is either the result of E1 or that of E2, depending on whether the
result of B is true or false.

# if 3 < 4 then 7 else 100;;
- : int = 7

# if 3 < 4 then (3 + 3) else (10 * 10);;
- : int = 6

# if false then (3 + 3) else (10 * 10);;
- : int = 100

# if false then false else true;;
- : bool = true



Defining things inductively

In mathematics, things are often defined inductively by giving a
“base case” and an “inductive case.” For example, the sum of all
integers from 0 to n or the product of all integers from 1 to n:

sum(0) = 0
sum(n) = n + sum(n − 1) if n ≥ 1

fact(1) = 1
fact(n) = n ∗ fact(n − 1) if n ≥ 2

It is customary to extend the factorial to all non-negative integers
by adopting the convention fact(0) = 1.



Recursive functions

We can translate inductive definitions directly into recursive
functions.

# let rec sum(n:int) = if n = 0 then 0 else n + sum(n-1);;
val sum : int -> int = <fun>

# sum(6);;
- : int = 21

# let rec fact(n:int) = if n = 0 then 1 else n * fact(n-1);;
val fact : int -> int = <fun>

# fact(6);;
- : int = 720

The rec after the let tells OCaml this is a recursive function —
one that needs to refer to itself in its own body.



Making Change

Another example of recursion on integer arguments. Suppose you
are a bank and therefore have an “infinite” supply of coins
(pennies, nickles, dimes, and quarters, and silver dollars), and you
have to give a customer a certain sum. How many ways are there
of doing this?
For example, there are 4 ways of making change for 12 cents:

12 pennies
1 nickle and 7 pennies
2 nickles and 2 pennies
1 dime and 2 pennies

We want to write a function change that, when applied to 12,
returns 4.



Making Change – continued

To get started, let’s consider a simplified variant of the problem
where the bank only has one kind of coin: pennies.
In this case, there is only one way to make change for a given
amount: pay the whole sum in pennies!

# (* No. of ways of paying a in pennies *)
let rec changeP (a:int) = 1;;

That wasn’t very hard.



Making Change – continued

Now suppose the bank has both nickels and pennies.
If a is less than 5 then we can only pay with pennies. If not, we
can do one of two things:

I Pay in pennies; we already know how to do this.

I Pay with at least one nickel. The number of ways of doing
this is the number of ways of making change (with nickels and
pennies) for a-5.

# (* No. of ways of paying in pennies and nickels *)
let rec changePN (a:int) =
if a < 5 then changeP a
else changeP a + changePN (a-5);;



Making Change – continued

Continuing the idea for dimes and quarters:

# (* ... pennies, nickels, dimes *)
let rec changePND (a:int) =
if a < 10 then changePN a
else changePN a + changePND (a-10);;

# (* ... pennies, nickels, dimes, quarters *)
let rec changePNDQ (a:int) =
if a < 25 then changePND a
else changePND a + changePNDQ (a-25);;



Finally:

# (* Pennies, nickels, dimes, quarters, dollars *)
let rec change (a:int) =
if a < 100 then changePNDQ a
else changePNDQ a + change (a-100);;

Some tests:

# change 5;;
- : int = 2

# change 9;;
- : int = 2

# change 10;;
- : int = 4



...

# change 29;;
- : int = 13
# change 30;;
- : int = 18

# change 100;;
- : int = 243

# change 499;;
- : int = 33995



Lists

One handy structure for storing a collection of data values is a list.
Lists are provided as a built-in type in OCaml and a number of
other popular languages (e.g., Lisp, Scheme, and Prolog—but not,
unfortunately, Java).
We can build a list in OCaml by writing out its elements, enclosed
in square brackets and separated by semicolons.

# [1; 3; 2; 5];;
- : int list = [1; 3; 2; 5]

The type that OCaml prints for this list is pronounced either
“integer list” or “list of integers”.
The empty list, written [], is sometimes called “nil.”



The types of lists

We can build lists whose elements are drawn from any of the basic
types (int, bool, etc.).

# ["cat"; "dog"; "gnu"];;
- : string list = ["cat"; "dog"; "gnu"]

# [true; true; false];;
- : bool list = [true; true; false]

We can also build lists of lists:

# [[1; 2]; [2; 3; 4]; [5]];;
- : int list list = [[1; 2]; [2; 3; 4]; [5]]

In fact, for every type t, we can build lists of type t list.



Lists are homogeneous

OCaml does not allow different types of elements to be mixed
within the same list:

# [1; 2; "dog"];;
Characters 7-13:
This expression has type string list but is here used
with type int list



Constructing Lists

OCaml provides a number of built-in operations that return lists.
The most basic one creates a new list by adding an element to the
front of an existing list. It is written :: and pronounced “cons”
(because it constructs lists).

# 1 :: [2; 3];;
- : int list = [1; 2; 3]

# let add123 (l: int list) = 1 :: 2 :: 3 :: l;;
val add123 : int list -> int list = <fun>

# add123 [5; 6; 7];;
- : int list = [1; 2; 3; 5; 6; 7]

# add123 [];;
- : int list = [1; 2; 3]



Some recursive functions that generate lists

# let rec repeat (k:int) (n:int) = (* A list of n copies of k *)
if n = 0 then []
else k :: repeat k (n-1);;

# repeat 7 12;;
- : int list = [7; 7; 7; 7; 7; 7; 7; 7; 7; 7; 7; 7]

# let rec fromTo (m:int) (n:int) = (* The numbers from m to n *)
if n < m then []
else m :: fromTo (m+1) n;;

# fromTo 9 18;;
- : int list = [9; 10; 11; 12; 13; 14; 15; 16; 17; 18]



Constructing Lists

Any list can be built by “consing” its elements together:

-# 1 :: 2 :: 3 :: 2 :: 1 :: [] ;;;
- : int list = [1; 2; 3; 2; 1]

In fact, [ x1; x2; . . . ; xn ] is simply a shorthand for

x1 :: x2 :: . . . :: xn :: []

Note that, when we omit parentheses from an expression involving
several uses of ::, we associate to the right—i.e., 1::2::3::[]
means the same thing as 1::(2::(3::[])). By contrast,
arithmetic operators like + and - associate to the left: 1-2-3-4
means ((1-2)-3)-4.



Taking Lists Apart

OCaml provides two basic operations for extracting the parts of a
list.

I List.hd (pronounced “head”) returns the first element of a
list.

# List.hd [1; 2; 3];;
- : int = 1

I List.tl (pronounced “tail”) returns everything but the first
element.

# List.tl [1; 2; 3];;
- : int list = [2; 3]



More list examples

# List.tl (List.tl [1; 2; 3]);;
- : int list = [3]

# List.tl (List.tl (List.tl [1; 2; 3]));;
- : int list = []

# List.hd (List.tl (List.tl [1; 2; 3]));;
- : int = 3



More list examples

# List.hd [[5; 4]; [3; 2]];;
- : int list = [5; 4]

# List.hd (List.hd [[5; 4]; [3; 2]]);;
- : int = 5

# List.tl (List.hd [[5; 4]; [3; 2]]);;
- : int list = [4]



Modules – a brief digression

Like most programming languages, OCaml includes a mechanism
for grouping collections of definitions into modules.

For example, the built-in module List provides the List.hd and
List.tl functions (and many others). That is, the name List.hd
really means “the function hd from the module List.”



Recursion on lists

Lots of useful functions on lists can be written using recursion.
Here’s one that sums the elements of a list of numbers:

# let rec listSum (l:int list) =
if l = [] then 0
else List.hd l + listSum (List.tl l);;

# listSum [5; 4; 3; 2; 1];;
- : int = 15



Consing on the right

# let rec snoc (l: int list) (x: int) =
if l = [] then x::[]
else List.hd l :: snoc(List.tl l) x;;

val snoc : int list -> int -> int list = <fun>

# snoc [5; 4; 3; 2] 1;;
- : int list = [5; 4; 3; 2; 1]



Reversing a list

We can use snoc to reverse a list:

# (* Reverses l -- inefficiently *)
let rec rev (l: int list) =
if l = [] then []
else snoc (rev (List.tl l)) (List.hd l);;

val rev : int list -> int list = <fun>

# rev [1; 2; 3; 3; 4];;
- : int list = [4; 3; 3; 2; 1]

Why is this inefficient? How can we do better?



A better rev

# (* Adds the elements of l to res in reverse order *)
let rec revaux (l: int list) (res: int list) =
if l = [] then res
else revaux (List.tl l) (List.hd l :: res);;

val revaux : int list -> int list -> int list = <fun>

# revaux [1; 2; 3] [4; 5; 6];;
- : int list = [3; 2; 1; 4; 5; 6]

# let rev (l: int list) = revaux l [];;
val rev : int list -> int list = <fun>



Tail recursion

The revaux function

let rec revaux (l: int list) (res: int list) =
if l = [] then res
else revaux (List.tl l) (List.hd l :: res);;

has an interesting property: the result of the recursive call to
revaux is also the result of the whole function. I.e., the recursive
call is the last thing on its “control path” through the body of the
function. (And the other possible control path does not involve a
recursive call.)
Such functions are said to be tail recursive.



Tail recursion

It is usually fairly easy to rewrite a recursive function in
tail-recursive style. For example, the usual factorial function is not
tail recursive (because one multiplication remains to be done after
the recursive call returns):

# let rec fact (n:int) =
if n = 0 then 1
else n * fact(n-1);;

We can transform it into a tail-recursive version by performing the
multiplication before the recursive call and passing along a
separate argument in which these multiplications “accumulate”:

# let rec factaux (acc:int) (n:int) =
if n = 0 then acc
else factaux (acc*n) (n-1);;

# let fact (n:int) = factaux 1 n;;
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