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Administrivia



Recitations

Recitations start this week.

Thursday, 10:30-12:00 Location TBA Review
Friday, 10:30-12:00 Location TBA Advanced



Study Groups

Anybody still want help forming a group?



Homework 2

Homework 1 was due at noon today.
Homework 2 will be available by this evening and will be due next
Monday at noon.

I Read Chapter 6 of Jason Hickey’s “Introduction to the
Objective Caml Programming Language” before starting



Class mailing list

If you have not been receiving messages for the class, please send
me an email and I will add you.



Questions from last time...

Are there any?



On With OCaml...



Basic Pattern Matching

Recursive functions on lists tend to have a standard shape: we test
whether the list is empty, and if it is not we do something involving
the head element and the tail.

# let rec listSum (l:int list) =
if l = [] then 0
else List.hd l + listSum (List.tl l);;

OCaml provides a convenient pattern-matching construct that
bundles the emptiness test and the extraction of the head and tail
into a single syntactic form:

# let rec listSum (l: int list) =
match l with
[] -> 0

| x::y -> x + listSum y;;



Pattern matching can be used with types other than lists. For
example, here it is used on integers:

# let rec fact (n:int) =
match n with
0 -> 1

| _ -> n * fact(n-1);;

The _ pattern here is a wildcard that matches any value.



Complex Patterns

The basic elements (constants, variable binders, wildcards, [], ::,
etc.) may be combined in arbitrarily complex ways in match
expressions:

# let silly l =
match l with
[_;_;_] -> "three elements long"

| _::x::y::_::_::rest ->
if x>y then "foo" else "bar"

| _ -> "dunno";;
val silly : int list -> string = <fun>
# silly [1;2;3];;
- : string = "three elements long"
# silly [1;2;3;4];;
- : string = "dunno"
# silly [1;2;3;4;5];;
- : string = "bar"



Type Inference

One pleasant feature of OCaml is a powerful type inference
mechanism that allows the compiler to calculate the types of
variables from the way in which they are used.

# let rec fact n =
match n with
0 -> 1

| _ -> n * fact(n-1);;
val fact : int -> int = <fun>

The compiler can tell that fact takes an integer argument because
n is used as an argument to the integer * and - functions.



Similarly:

# let rec listSum l =
match l with
[] -> 0

| x::y -> x + listSum y;;
val listSum : int list -> int = <fun>



Polymorphism (first taste)

# let rec length l =
match l with
[] -> 0

| _::y -> 1 + length y;;
val length : ’a list -> int = <fun>

The ’a in the type of length, pronounced “alpha,” is a type
variable standing for an arbitrary type.

The inferred type tells us that the function can take a list with
elements of any type (i.e., a list with elements of type alpha, for
any choice of alpha).

We’ll come back to polymorphism in more detail a bit later.



Tuples

Items connected by commas are “tuples.” (The enclosing parens
are optional.)

# "age", 44;;
- : string * int = "age", 44

# "professor","age", 33;;
- : string * string * int = "professor", "age", 33

# ("children", ["bob";"ted";"alice"]);;
- : string * string list =

"children", ["bob"; "ted"; "alice"]

# let g (x,y) = x*y;;
val g : int * int -> int = <fun>

How many arguments does g take?



Tuples are not lists

Please do not confuse them!

# let tuple = "cow", "dog", "sheep";;
val tuple : string * string * string =

"cow", "dog", "sheep"

# List.hd tuple;;
This expression has type string * string * string
but is here used with type ’a list

# let tup2 = 1, "cow";;
val tup2 : int * string = 1, "cow"

# let l2 = [1; "cow"];;
This expression has type string but is here
used with type int



Tuples and pattern matching

Tuples can be “deconstructed” by pattern matching:

# let lastName name =
match name with
(n,_,_) -> n;;

# lastName ("Pierce", "Benjamin", "Penn");;
- : string = "Pierce"



Example: Finding words

Suppose we want to take a list of characters and return a list of
lists of characters, where each element of the final list is a “word”
from the original list.

# split [’t’;’h’;’e’;’ ’;’b’;’r’;’o’;’w’;’n’;
’ ’;’d’;’o’;’g’];;

- : char list list =
[[’t’; ’h’; ’e’]; [’b’; ’r’; ’o’; ’w’; ’n’];
[’d’; ’o’; ’g’]]

(Character constants are written with single quotes.)



An implementation of split

# let rec loop w l =
match l with
[] -> [w]

| (’ ’::ls) -> w :: (loop [] ls)
| (c::ls) -> loop (w @ [c]) ls;;

val loop : char list
-> char list
-> char list list
= <fun>

# let split l = loop [] l;;
val split : char list -> char list list = <fun>

Note the use of both tuple patterns and nested patterns. The @
operator is shorthand for List.append.



Aside: Local function definitions

The loop function is completely local to split: there is no reason
for anybody else to use it — or even for anybody else to be able to
see it! It is good style in OCaml to write such definitions as local
bindings:

# let split l =
let rec loop w l =
match l with
[] -> [w]

| (’ ’::ls) -> w :: (loop [] ls)
| (c::ls) -> loop (w @ [c]) ls in

loop [] l;;



In general, any let definition that can appear at the top level

# let ...;;
# e;;;

can also appear in a let...in... form.

# let ... in e;;;



A Better Split

Our split function worked fine for the example we tried it on.
But here are some other tests:

# split [’a’;’ ’;’ ’;’b’];;
- : char list list = [[’a’]; []; [’b’]]

# split [’a’;’ ’];;
- : char list list = [[’a’]; []]

Could we refine split so that it would leave out these spurious
empty lists in the result?



Sure. First rewrite the pattern match a little (without changing its
behavior):

# let split l =
let rec loop w l =
match w,l with
_, [] -> [w]

| _, (’ ’::ls) -> w :: (loop [] ls)
| _, (c::ls) -> loop (w @ [c]) ls in

loop [] l;;



Then add a couple of clauses:

# let better_split l =
let rec loop w l =
match w,l with
[],[] -> []

| _,[] -> [w]
| [], (’ ’::ls) -> loop [] ls
| _, (’ ’::ls) -> w :: (loop [] ls)
| _, (c::ls) -> loop (w @ [c]) ls in

loop [] l;;

# better_split [’a’;’b’;’ ’;’ ’;’c’;’ ’;’d’;’ ’];;
- : char list list = [[’a’; ’b’]; [’c’]; [’d’]]
# better_split [’a’;’ ’];;
- : char list list = [[’a’]]
# better_split [’ ’;’ ’];;
- : char list list = []



Basic Exceptions

OCaml’s exception mechanism is roughly similar to that found in,
for example, Java.
We begin by defining an exception:

# exception Bad;;

Now, encountering raise Bad will immediately terminate
evaluation and return control to the top level:

# let rec fact n =
if n<0 then raise Bad
else if n=0 then 1
else n * fact(n-1);;

# fact (-3);;
Exception: Bad.



(Not) catching exceptions

Naturally, exceptions can also be caught within a program (using
the try...with... form), but let’s leave that for another day.



Defining New Types of Data



Predefined types

We have seen a number of data types:

int
bool
string
char
[x;y;z] lists
(x,y,z) tuples

Ocaml has a number of other built-in data types — in particular,
float, with operations like +., *., etc.

One can also create completely new data types.



The need for new types

The ability to construct new types is an essential part of most
programming languages.

For example, suppose we are building a (very simple) graphics
program that displays circles and squares. We can represent each
of these with three real numbers...



A circle is represented by the co-ordinates of its center and its
radius. A square is represented by the co-ordinates of its bottom
left corner and its width. So we can represent both shapes as
elements of the type:

float * float * float

However, there are two problems with using this type to represent
circles and squares. First, it is a bit long and unwieldy, both to
write and to read. Second, because their types are identical, there
is nothing to prevent us from mixing circles and squares. For
example, if we write

# let areaOfSquare (_,_,d) = d *. d;;

we might accidentally apply the areaOfSquare function to a circle
and get a nonsensical result.
(Recall that numerical operations on the float type are written
differently from the corresponding operations on int — e.g., +.
instead of +. See the OCaml manual for more information.)



Data Types

We can improve matters by defining square as a new type:

# type square = Square of float * float * float;;

This does two things:

I It creates a new type called square that is different from any
other type in the system.

I It creates a constructor called Square (with a capital S) that
can be used to create a square from three floats. For
example:

# Square(1.1, 2.2, 3.3);;
- : square = Square (1.1, 2.2, 3.3)



Taking data types apart

We take types apart with (surprise, surprise...) pattern matching.

# let areaOfSquare s =
match s with
Square(_, _, d) -> d *. d;;

val areaOfSquare : square -> float = <fun>

# let bottomLeftCoords s =
match s with
Square(x, y, _) -> (x,y);;

val bottomLeftCoords : square -> float * float
= <fun>

So we can use constructors like Square both as functions and as
patterns.



These functions can be written a little more concisely by
combining the pattern matching with the function header:

# let areaOfSquare (Square(_, _, d)) = d *. d;;
# let bottomLeftCoords (Square(x, y, _)) = (x,y);;



Continuing, we can define a data type for circles in the same way.

# type circle = Circle of float * float * float;;

# let c = Circle (1.0, 2.0, 2.0);;

# let areaOfCircle (Circle(_, _, r)) =
3.14159 *. r *. r;;

# let centerCoords (Circle(x, y, _)) = (x,y);;

# areaOfCircle c;;
- : float = 12.56636

We cannot now apply a function intended for type square to a
value of type circle:

# areaOfSquare c;;
This expression has type circle but is here used
with type square.



Variant types

Going back to the idea of a graphics program, we obviously want
to have several shapes on the screen at once. For this we’d
probably want to keep a list of circles and squares, but such a list
would be heterogenous. How do we make such a list?

Answer: Define a type that can be either a circle or a square.

# type shape = Circle of float * float * float
| Square of float * float * float;;

Now both constructors Circle and Square create values of type
shape. For example:

# Square (1.0, 2.0, 3.0);;
- : shape = Square (1.0, 2.0, 3.0)

A type that can have more than one form is often called a variant
type.



Pattern matching on variants

We can also write functions that do the right thing on all forms of
a variant type. Again we use pattern matching:

# let area s =
match s with
Circle (_, _, r) -> 3.14159 *. r *. r

| Square (_, _, d) -> d *. d;;

# area (Circle (0.0, 0.0, 1.5));;
- : float = 7.0685775



Here is a heterogeneous list:

# let l = [Circle (0.0, 0.0, 1.5);
Square (1.0, 2.0, 1.0);
Circle (2.0, 0.0, 1.5);
Circle (5.0, 0.0, 2.5)];;

# area (List.hd l);;
- : float = 7.0685775



Mixed-mode Arithmetic

Many programming languages (Lisp, Basic, Perl, database query
languages) use variant types internally to represent numbers that
can be either integers or floats. This amounts to tagging each
numeric value with an indicator that says what kind of number it is.

# type num = Int of int | Float of float;;

# let add r1 r2 =
match (r1,r2) with
(Int i1, Int i2) -> Int (i1 + i2)

| (Float r1, Int i2) -> Float (r1 +. float i2)
| (Int i1, Float r2) -> Float (float i1 +. r2)
| (Float r1, Float r2) -> Float (r1 +. r2);;

# add (Int 3) (Float 4.5);;
- : num = Float 7.5



More Mixed-Mode Functions

# let unaryMinus n =
match n with Int i -> Int (- i)

| Float r -> Float (-. r);;

# let minus n1 n2 = add n1 (unaryMinus n2);;

# let rec fact n =
if n = Int 0 then Int 1
else mult n (fact (minus n (Int 1)));;

# fact (Int 7);;
- : num = Int 5040

What will happen if we write fact 7?



A Data Type for Optional Values

Suppose we are implementing a simple lookup function for a
telephone directory. We want to give it a string and get back a
number (say an integer). We expect to have a function lookup
whose type is

lookup: string -> directory -> int

where directory is a (yet to be decided) type that we’ll use to
represent the directory.
However, this isn’t quite enough. What happens if a given string
isn’t in the directory? What should lookup return?
There are several ways to deal with this issue. One is to raise an
exception. Another uses the following data type:

# type optional_int = Absent | Present of int;;



To see how this type is used, let’s represent our directory as a list
of pairs:

# let directory = [("Joe", 1234); ("Martha", 5672);
("Jane", 3456); ("Ed", 7623)];;

# let rec lookup s l =
match l with
[] -> Absent

| (k,i)::t -> if k = s then Present(i)
else lookup s t;;

# lookup "Jane" directory;;
- : optional_int = Present 3456

# lookup "Karen" directory;;
- : optional_int = Absent



Built-in options

Because options are often useful in functional programming,
OCaml provides a built-in type t option for each type t. Its
constructors are None (corresponding to Absent) and Some (for
Present).

# let rec lookup s l =
match l with
[] -> None

| (k,i)::t -> if k = s then Some(i)
else lookup s t;;

# lookup "Jane" directory;;
- : optional_int = Some 3456



Enumerations

The option type has one variant, None, that is a “constant”
constructor carrying no data values with it. Data types in which all
the variants are constants can actually be quite useful...

# type color = Red | Yellow | Green;;
# let next c =

match c with Green -> Yellow | Yellow -> Red
| Red -> Green;;

# type day = Sunday | Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday;;

# let weekend d =
match d with
Saturday -> true

| Sunday -> true
| _ -> false;;



A Boolean Data Type

A simple data type can be used to replace the built-in booleans.
We use the constant constructors True and False to represent
true and false. We’ll use different names as needed to avoid
confusion between our booleans and the built-in ones:

# type myBool = False | True;;
# let myNot b =

match b with False -> True | True -> False;;
# let myAnd b1 b2 =

match (b1,b2) with
(True, True) -> True

| (True, False) -> False
| (False, True) -> False
| (False, False) -> False;;

Note that the behavior of myAnd is not quite the same as the
built-in &&!



Recursive Types

Consider the tiny language of arithmetic expressions defined by the
following (BNF-like) grammar:

exp ::= number
( exp + exp )
( exp - exp )
( exp * exp )

(We’ll come back to these grammars in more detail next week...)



We can translate this grammar directly into a datatype definition:

type ast =
ANum of int

| APlus of ast * ast
| AMinus of ast * ast
| ATimes of ast * ast;;

Notes:

I This datatype (like the original grammar) is recursive.

I The type ast represents abstract syntax trees, which capture
the underlying tree structure of expressions, suppressing
surface details such as parentheses



An evaluator for expressions

Goal: write an evaluator for these expressions.

val eval : ast -> int = <fun>

# eval (ATimes (APlus (ANum 12, ANum 340), ANum 5));;
- : int = 1760



The solution uses a recursive function plus a pattern match.

let rec eval e =
match e with
ANum i -> i

| APlus (e1,e2) -> eval e1 + eval e2
| AMinus (e1,e2) -> eval e1 - eval e2
| ATimes (e1,e2) -> eval e1 * eval e2;;
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