
CIS 500
Software Foundations

Fall 2006

October 2

Preliminaries

Homework

Results of my email survey:

I There was one badly misdesigned (PhD) problem and a
couple of others that were less well thought through than they
could have been. These generated the great majority of
specific complaints.

I Besides these, most people felt the homeworks were
somewhat—but not outrageously—too long.

I People seemed more or less happy with the pace of the
course... but no one wanted it faster! :-)

I “PhD questions” are an issue for mixed groups

Homework

Conclusion:

I Basically hold course

I Make homeworks a little shorter and tighter
I Change grading scheme for “PhD problems”

I Non-PhD students in “PhD groups” will be graded the same
as those in non-PhD groups

I Slow down a little more on harder bits of material during
lectures

I I need your help for this!

Midterm

I Wednesday, October 11th
I Topics:

I Basic OCaml
I TAPL Chapters 3–9
I Inductive definitions and proofs
I Operational semantics
I Untyped lambda-calculus
I Simple types

More About Bound Variables



Substitution

Our definition of evaluation is based on the “substitution” of
values for free variables within terms.

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

But what is substitution, exactly? How do we define it?

Substitution

For example, what does

(λx. x (λy. x y)) (λx. x y x)

reduce to?

Note that this example is not a “complete program” — the whole
term is not closed. We are mostly interested in the reduction
behavior of closed terms, but reduction of open terms is also
important in some contexts:

I program optimization

I alternative reduction strategies such as “full beta-reduction”

Formalizing Substitution

Consider the following definition of substitution:

[x 7→ s]x = s
[x 7→ s]y = y if x 6= y
[x 7→ s](λy.t1) = λy. ([x 7→ s]t1)
[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?

It substitutes for free and bound variables!

[x 7→ y](λx. x) = λx.y

This is not what we want!

Formalizing Substitution

Consider the following definition of substitution:

[x 7→ s]x = s
[x 7→ s]y = y if x 6= y
[x 7→ s](λy.t1) = λy. ([x 7→ s]t1)
[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?

It substitutes for free and bound variables!

[x 7→ y](λx. x) = λx.y

This is not what we want!

Substitution, take two

[x 7→ s]x = s
[x 7→ s]y = y if x 6= y
[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y
[x 7→ s](λx.t1) = λx. t1

[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?

It suffers from variable capture!

[x 7→ y](λy.x) = λx. x

This is also not what we want.

Substitution, take two

[x 7→ s]x = s
[x 7→ s]y = y if x 6= y
[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y
[x 7→ s](λx.t1) = λx. t1

[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?

It suffers from variable capture!

[x 7→ y](λy.x) = λx. x

This is also not what we want.



Substitution, take three

[x 7→ s]x = s
[x 7→ s]y = y if x 6= y
[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y, y 6∈ FV (s)
[x 7→ s](λx.t1) = λx. t1

[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?

Now substition is a partial function!

E.g., [x 7→ y](λy.x) is undefined.

But we want an result for every substitution.

Substitution, take three

[x 7→ s]x = s
[x 7→ s]y = y if x 6= y
[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y, y 6∈ FV (s)
[x 7→ s](λx.t1) = λx. t1

[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

What is wrong with this definition?

Now substition is a partial function!

E.g., [x 7→ y](λy.x) is undefined.

But we want an result for every substitution.

Bound variable names shouldn’t matter

It’s annoying that that the “spelling” of bound variable names is
causing trouble with our definition of substitution.

Intuition tells us that there shouldn’t be a difference between the
functions λx.x and λy.y. Both of these functions do exactly the
same thing.

Because they differ only in the names of their bound variables,
we’d like to think that these are the same function.

We call such terms alpha-equivalent.

Alpha-equivalence classes

In fact, we can create equivalence classes of terms that differ only
in the names of bound variables.

When working with the lambda calculus, it is convenient to think
about these equivalence classes, instead of raw terms.

For example, when we write λx.x we mean not just this term, but
the class of terms that includes λy.y and λz.z.

We can now freely choose a different representative from a term’s
alpha-equivalence class, whenever we need to, to avoid getting
stuck.

Substitution, for alpha-equivalence classes

Now consider substitution as an operation over alpha-equivalence
classes of terms.

[x 7→ s]x = s
[x 7→ s]y = y if x 6= y
[x 7→ s](λy.t1) = λy. ([x 7→ s]t1) if x 6= y, y 6∈ FV (s)
[x 7→ s](λx.t1) = λx. t1

[x 7→ s](t1 t2) = ([x 7→ s]t1)([x 7→ s]t2)

Examples:

I [x 7→ y](λy.x) must give the same result as [x 7→ y](λz.x).
We know the latter is λz.y, so that is what we will use for
the former.

I [x 7→ y](λx.z) must give the same result as [x 7→ y](λw.z).
We know the latter is λw.z so that is what we use for the
former.

Review

So what does

(λx. x (λy. x y)) (λx. x y x)

reduce to?



Types

Plan

I For today, we’ll go back to the simple language of arithmetic
and boolean expressions and show how to equip it with a
(very simple) type system

I The key property of this type system will be soundness:
Well-typed programs do not get stuck

I Next time, we’ll develop a simple type system for the
lambda-calculus

I We’ll spend a good part of the rest of the semester adding
features to this type system

Outline

1. begin with a set of terms, a set of values, and an evaluation
relation

2. define a set of types classifying values according to their
“shapes”

3. define a typing relation t : T that classifies terms according
to the shape of the values that result from evaluating them

4. check that the typing relation is sound in the sense that,

4.1 if t : T and t −→∗ v, then v : T
4.2 if t : T, then evaluation of t will not get stuck

Review: Arithmetic Expressions – Syntax

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
true true value
false false value
nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

Evaluation Rules

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′
1

if t1 then t2 else t3 −→ if t′
1 then t2 else t3

(E-If)

t1 −→ t′
1

succ t1 −→ succ t′
1

(E-Succ)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t′
1

pred t1 −→ pred t′
1

(E-Pred)

iszero 0 −→ true (E-IszeroZero)

iszero (succ nv1) −→ false (E-IszeroSucc)

t1 −→ t′
1

iszero t1 −→ iszero t′
1

(E-IsZero)



Types

In this language, values have two possible “shapes”: they are
either booleans or numbers.

T ::= types
Bool type of booleans
Nat type of numbers

Typing Rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

0 : Nat (T-Zero)

t1 : Nat

succ t1 : Nat
(T-Succ)

t1 : Nat

pred t1 : Nat
(T-Pred)

t1 : Nat

iszero t1 : Bool
(T-IsZero)

Typing Derivations

Every pair (t, T) in the typing relation can be justified by a
derivation tree built from instances of the inference rules.

T-Zero
0 : Nat

T-IsZero
iszero 0 : Bool

T-Zero
0 : Nat

T-Zero
0 : Nat

T-Pred
pred 0 : Nat

T-If
if iszero 0 then 0 else pred 0 : Nat

Proofs of properties about the typing relation often proceed by
induction on typing derivations.

Imprecision of Typing

Like other static program analyses, type systems are generally
imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)
approximation.

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

Using this rule, we cannot assign a type to

if true then 0 else false

even though this term will certainly evaluate to a number.

Properties of the Typing
Relation

Type Safety

The safety (or soundness) of this type system can be expressed by
two properties:

1. Progress: A well-typed term is not stuck

If t : T, then either t is a value or else t −→ t′ for
some t′.

2. Preservation: Types are preserved by one-step evaluation

If t : T and t −→ t′, then t′ : T.



Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...

Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...

Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...

Typechecking Algorithm

typeof(t) = if t = true then Bool
else if t = false then Bool
else if t = if t1 then t2 else t3 then
let T1 = typeof(t1) in
let T2 = typeof(t2) in
let T3 = typeof(t3) in
if T1 = Bool and T2=T3 then T2
else "not typable"

else if t = 0 then Nat
else if t = succ t1 then
let T1 = typeof(t1) in
if T1 = Nat then Nat else "not typable"

else if t = pred t1 then
let T1 = typeof(t1) in
if T1 = Nat then Nat else "not typable"

else if t = iszero t1 then
let T1 = typeof(t1) in
if T1 = Nat then Bool else "not typable"

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: ...

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: ...



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
T). Then either t is a value or else there is some t′ with t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′

1 such that t1 −→ t′
1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′

1, then, by E-If,
t −→ if t′

1 then t2 else t3.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
T). Then either t is a value or else there is some t′ with t −→ t′.

Proof:

By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′

1 such that t1 −→ t′
1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′

1, then, by E-If,
t −→ if t′

1 then t2 else t3.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
T). Then either t is a value or else there is some t′ with t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′

1 such that t1 −→ t′
1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′

1, then, by E-If,
t −→ if t′

1 then t2 else t3.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
T). Then either t is a value or else there is some t′ with t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′

1 such that t1 −→ t′
1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′

1, then, by E-If,
t −→ if t′

1 then t2 else t3.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
T). Then either t is a value or else there is some t′ with t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′

1 such that t1 −→ t′
1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′

1, then, by E-If,
t −→ if t′

1 then t2 else t3.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
T). Then either t is a value or else there is some t′ with t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′

1 such that t1 −→ t′
1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′

1, then, by E-If,
t −→ if t′

1 then t2 else t3.



Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: ...

Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: ...

Recap: Type Systems

I Very successful example of a lightweight formal method

I big topic in PL research

I enabling technology for all sorts of other things, e.g.
language-based security

I the skeleton around which modern programming languages are
designed


