CIS 500 Software Foundations Fall 2006

October 4

More on Types

Any Questions?

Review: Typing Rules

```
\begin{array}{c} \text{true} : \text{Bool} & \text{(T-True)} \\ \text{false} : \text{Bool} & \text{(T-FALSE)} \\ \\ \hline \underline{t_1 : \text{Bool}} & \underline{t_2 : T} & \underline{t_3 : T} \\ \hline \\ \text{if to then to else to : T} \end{array} \tag{T-IF)}
```

if
$$t_1$$
 then t_2 else $t_3:T$

$$0: Nat \qquad (T-ZERO)$$

$$t_1 : Nat$$
 (T-Succ)

succ
$$t_1$$
: Nat $\underbrace{t_1: Nat}_{}$ (T-PRED)

$$ext{pred } ext{t}_1 : ext{Nat}$$
 $ext{t}_1 : ext{Nat}$ $ext{iszero } ext{t}_1 : ext{Bool}$ $ext{T-IsZero)}$

Review: Inversion

Lemma:

- 1. If true: R, then R = Bool.
- 2. If false: R, then R = Bool.
- 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and t_3 : R.
- 4. If 0 : R, then R = Nat.
- 5. If succ $t_1 : R$, then R = Nat and $t_1 : Nat$.
- 6. If pred t_1 : R, then R = Nat and t_1 : Nat.
- 7. If iszero t_1 : R, then R = Bool and t_1 : Nat.

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof:

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v	::=		values
		true	true value
		false	false value
		nv	numeric value
nv	::=		numeric values
		0	zero value
		Succ nv	successor value

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv, since the inversion lemma tells us that v would then have type Nat, not Bool.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Canonical Forms

I emma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

```
        v
        values

        true
        true value

        false
        false value

        nv
        numeric value

        nv
        numeric value

        zero value
        successor value
```

For part 1, if v is true or false, the result is immediate.

Canonical Forms

I emma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

```
        v ::=
        values

        true
        true value

        false
        false value

        nv
        numeric value

        nv ::=
        numeric values

        0
        zero value

        succ nv
        successor value
```

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv, since the inversion lemma tells us that v would then have type Nat, not Bool. Part 2 is similar.

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof:

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

The $T\text{-}T\text{RUE},\ T\text{-}F\text{ALSE},\ \text{and}\ T\text{-}Z\text{ERO}$ cases are immediate, since t in these cases is a value.

Case T-IF: $t = if t_1 then t_2 else t_3$ $t_1 : Bool t_2 : T t_3 : T$

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

The T-TFalse, and T-Zero cases are immediate, since t in these cases is a value.

By the induction hypothesis, either \mathbf{t}_1 is a value or else there is some \mathbf{t}_1' such that $\mathbf{t}_1 \longrightarrow \mathbf{t}_1'$. If \mathbf{t}_1 is a value, then the canonical forms lemma tells us that it must be either \mathbf{true} or \mathbf{false} , in which case either E-IFTRUE or E-IFFALSE applies to \mathbf{t} . On the other hand, if $\mathbf{t}_1 \longrightarrow \mathbf{t}_1'$, then, by E-IF,

 $t \longrightarrow \text{if } t_1' \text{ then } t_2 \text{ else } t_3.$

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

The cases for rules T-ZERO, T-SUCC, T-PRED, and T-IsZERO are similar

(Recommended: Try to reconstruct them.)

Preservation

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Preservation

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Preservation

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-TRUE: t = true T = Bool

Then t is a value, so it cannot be that $t \longrightarrow t'$ for any t', and the theorem is vacuously true.

Preservation

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-IF:

```
\mathtt{t} = \mathtt{if} \ \mathtt{t}_1 \ \mathtt{then} \ \mathtt{t}_2 \ \mathtt{else} \ \mathtt{t}_3 \ \mathtt{t}_1 : \mathtt{Bool} \ \mathtt{t}_2 : \mathtt{T} \ \mathtt{t}_3 : \mathtt{T}
```

There are three evaluation rules by which $t \longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Preservation

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-IF:

```
\mathsf{t} = \mathsf{if} \ \mathsf{t}_1 \ \mathsf{then} \ \mathsf{t}_2 \ \mathsf{else} \ \mathsf{t}_3 \ \mathsf{t}_1 : \mathsf{Bool} \ \mathsf{t}_2 : \mathsf{T} \ \mathsf{t}_3 : \mathsf{T}
```

There are three evaluation rules by which $t \longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IFTRUE: $t_1 = true$ $t' = t_2$ Immediate, by the assumption $t_2 : T$.

(E-IFFALSE subcase: Similar.)

Preservation

Theorem: If t : T and $t \longrightarrow t'$, then t' : T.

Proof: By induction on the given typing derivation.

Case T-IF:

```
t = \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \quad t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T
```

There are three evaluation rules by which $t \longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IF: $t_1 \longrightarrow t'_1$ $t' = \text{if } t'_1 \text{ then } t_2 \text{ else } t_3$

Applying the IH to the subderivation of t_1 : Bool yields t_1' : Bool. Combining this with the assumptions that t_2 : T and t_3 : T, we can apply rule T-IF to conclude that

if t'_1 then t_2 else t_3 : T, that is, t': T.

The Simply Typed Lambda-Calculus

The simply typed lambda-calculus

The system we are about to define is commonly called the *simply typed lambda-calculus*, or λ_{\rightarrow} for short.

Unlike the untyped lambda-calculus, the "pure" form of λ_{\rightarrow} (with no primitive values or operations) is not very interesting; to talk about λ_{\rightarrow} , we always begin with some set of "base types."

- So, strictly speaking, there are many variants of λ, depending on the choice of base types.
- ► For now, we'll work with a variant constructed over the booleans.

Untyped lambda-calculus with booleans

"Simple Types"

$$\begin{array}{ccc} T & ::= & & \\ & & \text{Bool} \\ & & T {\rightarrow} T & \end{array}$$

types type of booleans types of functions

Type Annotations

We now have a choice to make. Do we...

 annotate lambda-abstractions with the expected type of the argument

$$\lambda x: T_1.$$
 t₂

(as in most mainstream programming languages), or

▶ continue to write lambda-abstractions as before

$$\lambda x$$
. to

and ask the typing rules to "guess" an appropriate annotation (as in OCamI)?

Both are reasonable choices, but the first makes the job of defining the typin rules simpler. Let's take this choice for now.

Typing rules

Typing rules

$$\begin{array}{c} \text{true: Bool} & \text{(T-True)} \\ \\ \text{false: Bool} & \text{(T-FALSE)} \\ \\ \hline \\ \frac{t_1: \text{Bool}}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3: T} \\ \end{array} \tag{T-IF)}$$

$$\frac{???}{\lambda x: T_1. t_2: T_1 \rightarrow T_2}$$
 (T-Abs)

Typing rules

$$\frac{\mathtt{t}_1: \mathtt{Bool} \qquad \mathtt{t}_2: \mathtt{T} \qquad \mathtt{t}_3: \mathtt{T}}{\mathtt{if} \ \mathtt{t}_1 \ \mathtt{then} \ \mathtt{t}_2 \ \mathtt{else} \ \mathtt{t}_3: \mathtt{T}} \qquad \qquad (\mathtt{T-IF})$$

$$\frac{\Gamma, x: T_1 \vdash t_2: T_2}{\Gamma \vdash \lambda x: T_1. t_2: T_1 \rightarrow T_2}$$
 (T-Abs)

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T} \tag{T-VAR}$$

Typing rules

$$\frac{\Gamma \vdash t_1 : \texttt{Bool} \qquad \Gamma \vdash t_2 : T \qquad \Gamma \vdash t_3 : T}{\Gamma \vdash \texttt{if} \ t_1 \ \texttt{then} \ t_2 \ \texttt{else} \ t_3 : T} \qquad \textbf{(T-IF)}$$

$$\frac{\Gamma, x: T_1 \vdash t_2: T_2}{\Gamma \vdash \lambda x: T_1. t_2: T_1 \rightarrow T_2}$$
 (T-Abs)

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T} \tag{T-Var}$$

$$\frac{\Gamma \vdash \mathsf{t}_1 \,:\, \mathsf{T}_{11} \!\rightarrow\! \mathsf{T}_{12} \qquad \Gamma \vdash \mathsf{t}_2 \,:\, \mathsf{T}_{11}}{\Gamma \vdash \mathsf{t}_1 \,:\, \mathsf{t}_2 \,:\, \mathsf{T}_{12}} \qquad \qquad \mathsf{(T-APP)}$$

Typing Derivations

What derivations justify the following typing statements?

- $\blacktriangleright \vdash (\lambda x:Bool.x) \text{ true} : Bool}$
- ▶ f:Bool \rightarrow Bool \vdash f (if false then true else false) : Bool
- ▶ f:Bool \rightarrow Bool \vdash λ x:Bool. f (if x then false else x) : Bool \rightarrow Bool

Properties of λ_{\rightarrow}

The fundamental property of the type system we have just defined is *soundness* with respect to the operational semantics.

- 1. Progress: A closed, well-typed term is not stuck $\textit{If} \vdash t : \textit{T, then either } t \textit{ is a value or else } t \longrightarrow t' \\ \textit{for some } t'.$
- 2. Preservation: Types are preserved by one-step evaluation If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Proving progress

Same steps as before...

Proving progress

Same steps as before...

- ▶ inversion lemma for typing relation
- canonical forms lemma
- progress theorem

Inversion

Lemma:

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3:R$, then $\Gamma \vdash t_1:Bool$ and $\Gamma \vdash t_2,t_3:R$.

Inversion

Lemma:

- 1. If $\Gamma \vdash \mathtt{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3:R$, then $\Gamma \vdash t_1:Bool$ and $\Gamma \vdash t_2,t_3:R$.
- 4. If $\Gamma \vdash x : R$, then

Inversion

Lemma:

- 1. If $\Gamma \vdash \mathtt{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3: R$, then $\Gamma \vdash t_1:$ Bool and $\Gamma \vdash t_2, t_3: R$.
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.

Inversion

Lemma:

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3:R$, then $\Gamma \vdash t_1:Bool$ and $\Gamma \vdash t_2,t_3:R$.
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x:T_1.t_2:R$, then

Inversion

Lemma:

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3:R$, then $\Gamma \vdash t_1:Bool$ and $\Gamma \vdash t_2,t_3:R$.
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x : T_1 \cdot t_2 : R$, then $R = T_1 {\rightarrow} R_2$ for some R_2 with $\Gamma, \, x : T_1 \vdash t_2 : R_2$.

Inversion

Lemma:

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3:R$, then $\Gamma \vdash t_1:Bool$ and $\Gamma \vdash t_2,t_3:R$.
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1 \cdot t_2: R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x: T_1 \vdash t_2: R_2$.
- 6. If $\Gamma \vdash t_1 \ t_2 : R$, then

Inversion

Lemma:

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash \mathtt{false} : R$, then R = Bool.
- 3. If $\Gamma \vdash \text{if } t_1$ then t_2 else $t_3:R,$ then $\Gamma \vdash t_1:Bool$ and $\Gamma \vdash t_2,t_3:R.$
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x : T_1 \cdot t_2 : R$, then $R = T_1 {\rightarrow} R_2$ for some R_2 with $\Gamma, \, x : T_1 \vdash t_2 : R_2$.
- 6. If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} {\rightarrow} R$ and $\Gamma \vdash t_2 : T_{11}$.

Canonical Forms

Lemma:

Canonical Forms

Lemma:

1. If v is a value of type Bool, then

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type $T_1 \rightarrow T_2$, then

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type $T_1 \rightarrow T_2$, then v has the form $\lambda x: T_1.t_2$.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction

Progress

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because ${\bf t}$ is closed). The abstraction case is immediate, since abstractions are values.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $t=t_1\ t_2$ with $\vdash t_1:T_{11}{\to}T_{12}$ and $\vdash t_2:T_{11}$.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $\mathbf{t}=\mathbf{t}_1\ \mathbf{t}_2$ with $\vdash \mathbf{t}_1: T_{11} {\rightarrow} T_{12}$ and $\vdash \mathbf{t}_2: T_{11}$. By the induction hypothesis, either \mathbf{t}_1 is a value or else it can make a step of evaluation, and likewise \mathbf{t}_2 .

Progress

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $\mathbf{t} = \mathbf{t}_1 \ \mathbf{t}_2$ with $\vdash \mathbf{t}_1 : T_{11} {\rightarrow} T_{12}$ and $\vdash \mathbf{t}_2 : T_{11}$. By the induction hypothesis, either \mathbf{t}_1 is a value or else it can make a step of evaluation, and likewise \mathbf{t}_2 . If \mathbf{t}_1 can take a step, then rule E-APP1 applies to \mathbf{t} . If \mathbf{t}_1 is a value and \mathbf{t}_2 can take a step, then rule E-APP2 applies. Finally, if both \mathbf{t}_1 and \mathbf{t}_2 are values, then the canonical forms lemma tells us that \mathbf{t}_1 has the form $\lambda \mathbf{x} : T_{11} \cdot \mathbf{t}_{12}$, and so rule E-APPABS applies to \mathbf{t} .

Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction

Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on typing derivations.

Which case is the hard one??

Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on typing derivations.

 $\begin{array}{lll} \text{Case T-APP:} & \text{Given} & \textbf{t} = \textbf{t}_1 \ \textbf{t}_2 \\ & \Gamma \vdash \textbf{t}_1 : \textbf{T}_{11} {\rightarrow} \textbf{T}_{12} \\ & \Gamma \vdash \textbf{t}_2 : \textbf{T}_{11} \\ & \textbf{T} = \textbf{T}_{12} \\ & \text{Show} & \Gamma \vdash \textbf{t}' : \textbf{T}_{12} \end{array}$

Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on typing derivations.

 $\begin{array}{lll} \text{Case T-APP:} & \text{Given} & \textbf{t} = \textbf{t}_1 \ \textbf{t}_2 \\ & \Gamma \vdash \textbf{t}_1 : \textbf{T}_{11} {\rightarrow} \textbf{T}_{12} \\ & \Gamma \vdash \textbf{t}_2 : \textbf{T}_{11} \\ & \textbf{T} = \textbf{T}_{12} \\ & \text{Show} & \Gamma \vdash \textbf{t}' : \textbf{T}_{12} \end{array}$

By the inversion lemma for evaluation, there are three subcases...

Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on typing derivations.

 $\begin{array}{lll} \text{Case T-APP:} & \text{Given} & \texttt{t} = \texttt{t}_1 \ \texttt{t}_2 \\ & \Gamma \vdash \texttt{t}_1 : \texttt{T}_{11} {\rightarrow} \texttt{T}_{12} \\ & \Gamma \vdash \texttt{t}_2 : \texttt{T}_{11} \\ & \texttt{T} = \texttt{T}_{12} \\ & \text{Show} & \Gamma \vdash \texttt{t}' : \texttt{T}_{12} \end{array}$

By the inversion lemma for evaluation, there are three subcases...

Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on typing derivations.

 $\begin{array}{lll} \text{Case T-APP:} & \text{Given} & \textbf{t}=\textbf{t}_1 \ \textbf{t}_2 \\ & \Gamma \vdash \textbf{t}_1 : \textbf{T}_{11} {\rightarrow} \textbf{T}_{12} \\ & \Gamma \vdash \textbf{t}_2 : \textbf{T}_{11} \\ & \textbf{T}=\textbf{T}_{12} \\ & \text{Show} & \Gamma \vdash \textbf{t}' : \textbf{T}_{12} \end{array}$

By the inversion lemma for evaluation, there are three subcases...

Uh oh.

The "Substitution Lemma"

Lemma: Types are preserved under substitition.

That is, if $\Gamma,\,x\!:\!S\vdash t\,:\,T$ and $\Gamma\vdash s\,:\,S,$ then $\Gamma\vdash [x\mapsto s]t\,:\,T.$

The "Substitution Lemma"

Lemma: Types are preserved under substitition.

That is, if $\Gamma, x: S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

Proof: ...

Preservation

Recommended: Complete the proof of preservation