
CIS 500
Software Foundations

Fall 2006

October 9

Review

Church encoding of lists

... will not be on the exam. :-)

Briefly, though, here’s the intuition:

c4 = λs. λz. s (s (s (s z)))

[v1;v2;v3;v4] = λs. λz. s v1 (s v2 (s v3 (s v4 z)))
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Typing derivations

Exercise 9.2.2: Show (by drawing derivation trees) that the
following terms have the indicated types:

1. f:Bool→Bool ` f (if false then true else false) :
Bool

2. f:Bool→Bool `
λx:Bool. f (if x then false else x) : Bool→Bool



The two typing relations

Question: What is the relation between these two statements?

1. t : T

2. ` t : T

First answer: These two relations are completely different things.

I We are dealing with several different small programming
languages, each with its own typing relation (between terms in
that language and types in that language)

I For the simple language of numbers and booleans, typing is a
binary relation between terms and types (t : T).

I For λ→, typing is a ternary relation between contexts, terms,
and types (Γ ` t : T).

(When the context is empty — because the term has no free
variables — we often write ` t : T to mean ∅ ` t : T.)
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Conservative extension

Second answer: The typing relation for λ→ conservatively extends
the one for the simple language of numbers and booleans.

I Write “language 1” for the language of numbers and booleans
and “language 2” for the simply typed lambda-calculus with
base types Nat and Bool.

I The terms of language 2 include all the terms of language 1;
similarly typing rules.

I Write t :1 T for the typing relation of language 1.

I Write Γ ` t :2 T for the typing relation of language 2.

I Theorem: Language 2 conservatively extends language 1: If t
is a term of language 1 (involving only booleans, conditions,
numbers, and numeric operators) and T is a type of language
1 (either Bool or Nat), then t :1 T iff ∅ ` t :2 T.

Preservation (and Weaking,
Permutation, Substitution)

Review: Proving progress

Let’s quickly review the steps in the proof of the progress theorem:

I inversion lemma for typing relation

I canonical forms lemma

I progress theorem

Inversion

Lemma:

1. If Γ ` true : R, then R = Bool.

2. If Γ ` false : R, then R = Bool.

3. If Γ ` if t1 then t2 else t3 : R, then Γ ` t1 : Bool and
Γ ` t2, t3 : R.

4. If Γ ` x : R, then

x:R ∈ Γ.

5. If Γ ` λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 ` t2 : R2.

6. If Γ ` t1 t2 : R, then there is some type T11 such that
Γ ` t1 : T11→R and Γ ` t2 : T11.
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Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.
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Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, ` t : T
for some T). Then either t is a value or else there is some t′ with
t −→ t′.



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Steps of proof:

I Weakening

I Permutation

I Substitution preserves types

I Reduction preserves types (i.e., preservation)

Weakening and Permutation

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.
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Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction

on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12

Γ `t2 : T11

T = T12

Show Γ ` t′ : T12

By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = λx:T11. t12

t2 a value v2

t′ = [x 7→ v2]t12

Uh oh. What do we need to know to make this case go through??
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The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

I.e., “Types are preserved under substitition.”

Proof: By induction on the depth of a derivation of
Γ, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.
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Case T-Var: t = z
with z:T ∈ (Γ, x:S)

There are two sub-cases to consider, depending on whether z is x
or another variable. If z = x, then [x 7→ s]z = s. The required
result is then Γ ` s : S, which is among the assumptions of the
lemma. Otherwise, [x 7→ s]z = z, and the desired result is
immediate.

The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the depth of a derivation of
Γ, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.

Case T-Abs: t = λy:T2.t1 T = T2→T1

Γ, x:S, y:T2 ` t1 : T1

By our conventions on choice of bound variable names, we may
assume x 6= y and y /∈ FV(s). Using permutation on the given
subderivation, we obtain Γ, y:T2, x:S ` t1 : T1. Using weakening
on the other given derivation (Γ ` s : S), we obtain
Γ, y:T2 ` s : S. Now, by the induction hypothesis,
Γ, y:T2 ` [x 7→ s]t1 : T1. By T-Abs,
Γ ` λy:T2. [x 7→ s]t1 : T2→T1, i.e. (by the definition of
substitution), Γ ` [x 7→ s]λy:T2. t1 : T2→T1.


