CIS 500
 Software Foundations Fall 2006

Review

October 9

Church encoding of lists

Church encoding of lists
... will not be on the exam. :-)
Briefly, though, here's the intuition:
$c_{4}=\lambda s . \lambda z . s(s(s \quad(s z)))$
$\left[\mathrm{v}_{1} ; \mathrm{v}_{2} ; \mathrm{v}_{3} ; \mathrm{v}_{4}\right]=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s} \mathrm{v}_{1}\left(\mathrm{~s} \mathrm{v}_{2}\left(\mathrm{~s} \mathrm{v}_{3}\left(\mathrm{~s} \mathrm{v}_{4} \mathrm{z}\right)\right)\right.$)

Church encoding of lists
... will not be on the exam. :-)
Briefly, though, here's the intuition:
$\mathrm{c}_{4}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s} z)) \mathrm{z}$

Typing derivations

Exercise 9.2.2: Show (by drawing derivation trees) that the following terms have the indicated types:

1. $f: B o o l \rightarrow$ Bool $\vdash f$ (if false then true else false) : Bool
2. $f: B o o l \rightarrow B o o l \vdash$
$\lambda \mathrm{x}$:Bool. f (if x then false else x) : Bool \rightarrow Bool

The two typing relations

Question: What is the relation between these two statements?

1. $\mathrm{t}: \mathrm{T}$
2. $\vdash \mathrm{t}: \mathrm{T}$

The two typing relations

Question: What is the relation between these two statements?

1. $\mathrm{t}: \mathrm{T}$
2. $\vdash \mathrm{t}: \mathrm{T}$

First answer: These two relations are completely different things.

- We are dealing with several different small programming languages, each with its own typing relation (between terms in that language and types in that language)
- For the simple language of numbers and booleans, typing is a binary relation between terms and types ($\mathrm{t}: \mathrm{T}$).
- For λ_{\rightarrow}, typing is a ternary relation between contexts, terms, and types $(\Gamma \vdash \mathrm{t}: \mathrm{T})$.
(When the context is empty - because the term has no free variables - we often write $\vdash \mathrm{t}: \mathrm{T}$ to mean $\emptyset \vdash \mathrm{t}: \mathrm{T}$.)

Conservative extension

Second answer: The typing relation for λ_{\rightarrow} conservatively extends the one for the simple language of numbers and booleans.

- Write "language 1 " for the language of numbers and booleans and "language 2 " for the simply typed lambda-calculus with base types Nat and Bool.
- The terms of language 2 include all the terms of language 1 ; similarly typing rules.
- Write $t:_{1} \mathrm{~T}$ for the typing relation of language 1.

- Theorem: Language 2 conservatively extends language 1: If t is a term of language 1 (involving only booleans, conditions, numbers, and numeric operators) and T is a type of language 1 (either Bool or Nat), then $t:_{1} T$ iff $\emptyset \vdash t:_{2} T$.

Preservation (and Weaking, Permutation, Substitution)

Review: Proving progress

Let's quickly review the steps in the proof of the progress theorem:

- inversion lemma for typing relation
- canonical forms lemma
- progress theorem

Inversion

Lemma:

1. If $\Gamma \vdash$ true : R , then $\mathrm{R}=$ Bool.
2. If $\Gamma \vdash f$ alse : R, then $R=$ Bool.
3. If $\Gamma \vdash$ if t_{1} then t_{2} else $t_{3}: R$, then $\Gamma \vdash t_{1}:$ Bool and $\Gamma \vdash t_{2}, t_{3}: R$.
4. If $\Gamma \vdash x: R$, then

Inversion

Lemma:

1. If $\Gamma \vdash$ true : R, then $R=B o o l$.
2. If $\Gamma \vdash$ false : R, then $R=$ Bool.
3. If $\Gamma \vdash$ if t_{1} then t_{2} else $t_{3}: R$, then $\Gamma \vdash t_{1}:$ Bool and $\Gamma \vdash t_{2}, t_{3}: R$.
4. If $\Gamma \vdash x: R$, then $x: R \in \Gamma$.
5. If $\Gamma \vdash \lambda x: T_{1}, t_{2}: R$, then

Inversion

Lemma:

1. If $\Gamma \vdash$ true : R, then $R=$ Bool.
2. If $\Gamma \vdash$ false : R, then $R=$ Bool.
3. If $\Gamma \vdash$ if t_{1} then t_{2} else $t_{3}: R$, then $\Gamma \vdash t_{1}:$ Bool and $\Gamma \vdash t_{2}, \mathrm{t}_{3}: \mathrm{R}$.
4. If $\Gamma \vdash x: R$, then $x: R \in \Gamma$.
5. If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{T}_{1}$. $\mathrm{t}_{2}: \mathrm{R}$, then $\mathrm{R}=\mathrm{T}_{1} \rightarrow \mathrm{R}_{2}$ for some R_{2} with $\Gamma, \mathrm{x}: \mathrm{T}_{1} \vdash \mathrm{t}_{2}: \mathrm{R}_{2}$.
6. If $\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{R}$, then

Inversion

Lemma:

1. If $\Gamma \vdash$ true : R, then $R=$ Bool.
2. If $\Gamma \vdash f$ false : R, then $R=$ Bool.
3. If $\Gamma \vdash$ if t_{1} then t_{2} else $t_{3}: R$, then $\Gamma \vdash t_{1}:$ Bool and $\Gamma \vdash t_{2}, t_{3}: R$.
4. If $\Gamma \vdash x: R$, then $x: R \in \Gamma$.
5. If $\Gamma \vdash \lambda x: T_{1} . t_{2}: R$, then $R=T_{1} \rightarrow R_{2}$ for some R_{2} with $\Gamma, x: T_{1} \vdash t_{2}: R_{2}$.
6. If $\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{R}$, then there is some type T_{11} such that $\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{R}$ and $\Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$.

Canonical Forms

Lemma:

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.
2. If v is a value of type $T_{1} \rightarrow T_{2}$, then v has the form $\lambda x: T_{1}, t_{2}$.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash \mathrm{t}: \mathrm{T}$ for some T). Then either t is a value or else there is some t^{\prime} with $t \longrightarrow t^{\prime}$.

Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Steps of proof:

- Weakening
- Permutation
- Substitution preserves types
- Reduction preserves types (i.e., preservation)

Weakening and Permutation

Weakening tells us that we can add assumptions to the context without losing any true typing statements.
Lemma: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{x} \notin \operatorname{dom}(\Gamma)$, then $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$.

Weakening and Permutation

Weakening tells us that we can add assumptions to the context without losing any true typing statements.
Lemma: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{x} \notin \operatorname{dom}(\Gamma)$, then $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$.

Permutation tells us that the order of assumptions in (the list) Γ does not matter.

Lemma: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and Δ is a permutation of Γ, then $\Delta \vdash \mathrm{t}: \mathrm{T}$.

Weakening and Permutation

Weakening tells us that we can add assumptions to the context without losing any true typing statements.
Lemma: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{x} \notin \operatorname{dom}(\Gamma)$, then $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$.
Moreover, the latter derivation has the same depth as the former.
Permutation tells us that the order of assumptions in (the list) Γ does not matter.

Lemma: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and Δ is a permutation of Γ, then $\Delta \vdash \mathrm{t}: \mathrm{T}$.
Moreover, the latter derivation has the same depth as the former.

Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction

Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction on typing derivations.
Which case is the hard one??

Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction on typing derivations.
Case T-App: Given $t=t_{1} t_{2}$
$\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12}$
$\Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$
$\mathrm{T}=\mathrm{T}_{12}$
Show $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}_{12}$

Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction on typing derivations.
Case T-ApP: Given $t=t_{1} t_{2}$
$\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12}$
$\Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$
$\mathrm{T}=\mathrm{T}_{12}$
Show 「ト $\mathrm{t}^{\prime}: \mathrm{T}_{12}$
By the inversion lemma for evaluation, there are three subcases...

Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction on typing derivations.
Case T-App: Given $t=t_{1} t_{2}$
$\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12}$
$\Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$
$\mathrm{T}=\mathrm{T}_{12}$
Show $\Gamma \vdash t^{\prime}: T_{12}$
By the inversion lemma for evaluation, there are three subcases...
Subcase: $\mathrm{t}_{1}=\lambda \mathrm{x}: \mathrm{T}_{11} . \mathrm{t}_{12}$

$$
\begin{aligned}
& \mathrm{t}_{2} \text { a value } \mathrm{v}_{2} \\
& \mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
\end{aligned}
$$

Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction on typing derivations.
Case T-APP: Given $t=t_{1} t_{2}$
$\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12}$
$\Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$
$\mathrm{T}=\mathrm{T}_{12}$
Show $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}_{12}$
By the inversion lemma for evaluation, there are three subcases...
Subcase: $\mathrm{t}_{1}=\lambda \mathrm{x}: \mathrm{T}_{11} . \mathrm{t}_{12}$

$$
\begin{aligned}
& \mathrm{t}_{2} \text { a value } \mathrm{v}_{2} \\
& \mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
\end{aligned}
$$

Uh oh.

Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction on typing derivations.
Case T-APP: Given $t=t_{1} t_{2}$

$$
\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12}
$$

$\Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}$
$\mathrm{T}=\mathrm{T}_{12}$
Show $\Gamma \vdash t^{\prime}: T_{12}$
By the inversion lemma for evaluation, there are three subcases...
Subcase: $\mathrm{t}_{1}=\lambda \mathrm{x}: \mathrm{T}_{11} \cdot \mathrm{t}_{12}$
t_{2} a value v_{2}
$\mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}$
Uh oh. What do we need to know to make this case go through??

The "Substitution Lemma"

Lemma: If $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$ and $\Gamma \vdash \mathrm{s}: \mathrm{S}$, then $\Gamma \vdash[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}: \mathrm{T}$.
l.e., "Types are preserved under substitition."

The "Substitution Lemma"

Lemma: If $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$ and $\Gamma \vdash \mathrm{s}: \mathrm{S}$, then $\Gamma \vdash[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}: \mathrm{T}$.
Proof: By induction on the depth of a derivation of $\Gamma, x: S \vdash t: T$. Proceed by cases on the final typing rule used in the derivation.

The "Substitution Lemma"

Lemma: If $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$ and $\Gamma \vdash \mathrm{s}: \mathrm{S}$, then $\Gamma \vdash[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}: \mathrm{T}$.
Proof: By induction on the depth of a derivation of $\Gamma, x: S \vdash t: T$. Proceed by cases on the final typing rule used in the derivation.

The "Substitution Lemma"

Lemma: If $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$ and $\Gamma \vdash \mathrm{s}: \mathrm{S}$, then $\Gamma \vdash[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}: \mathrm{T}$.
Proof: By induction on the depth of a derivation of $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$. Proceed by cases on the final typing rule used in the derivation.

$$
\begin{array}{ll}
\text { Case T-App: } & \mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \\
& \Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}_{1}: \mathrm{T}_{2} \rightarrow \mathrm{~T}_{1} \\
& \Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}_{2}: \mathrm{T}_{2} \\
& \mathrm{~T}=\mathrm{T}_{1}
\end{array}
$$

By the induction hypothesis, $\Gamma \vdash[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}_{1}: \mathrm{T}_{2} \rightarrow \mathrm{~T}_{1}$ and
$\Gamma \vdash[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}_{2}: \mathrm{T}_{2}$. By T-APP, $\Gamma \vdash[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}_{1}[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}_{2}: \mathrm{T}$, i.e., $\Gamma \vdash[\mathrm{x} \mapsto \mathrm{s}]\left(\mathrm{t}_{1} \mathrm{t}_{2}\right): \mathrm{T}$.

The "Substitution Lemma"

Lemma: If $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$ and $\Gamma \vdash \mathrm{s}: \mathrm{S}$, then $\Gamma \vdash[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}: \mathrm{T}$.
Proof: By induction on the depth of a derivation of $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$. Proceed by cases on the final typing rule used in the derivation.

$$
\begin{array}{ll}
\text { Case T-VAR: } & t=z \\
& \text { with } z: T \in(\Gamma, x: S)
\end{array}
$$

There are two sub-cases to consider, depending on whether z is x or another variable. If $z=x$, then $[x \mapsto s] z=s$. The required result is then $\Gamma \vdash s: S$, which is among the assumptions of the lemma. Otherwise, $[\mathrm{x} \mapsto \mathrm{s}] \mathrm{z}=\mathrm{z}$, and the desired result is immediate.

The "Substitution Lemma"
Lemma: If $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$ and $\Gamma \vdash \mathrm{s}: \mathrm{S}$, then $\Gamma \vdash[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}: \mathrm{T}$.
Proof: By induction on the depth of a derivation of $\Gamma, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}: \mathrm{T}$. Proceed by cases on the final typing rule used in the derivation.

$$
\begin{array}{ll}
\text { Case T-ABS: } & \mathrm{t}=\lambda \mathrm{y}: \mathrm{T}_{2} \cdot \mathrm{t}_{1} \quad \mathrm{~T}=\mathrm{T}_{2} \rightarrow \mathrm{~T}_{1} \\
& \Gamma, \mathrm{x}: \mathrm{S}, \mathrm{y}: \mathrm{T}_{2} \vdash \mathrm{t}_{1}: \mathrm{T}_{1}
\end{array}
$$

By our conventions on choice of bound variable names, we may assume $\mathrm{x} \neq \mathrm{y}$ and $\mathrm{y} \notin F V(\mathrm{~s})$. Using permutation on the given subderivation, we obtain $\Gamma, \mathrm{y}: \mathrm{T}_{2}, \mathrm{x}: \mathrm{S} \vdash \mathrm{t}_{1}: \mathrm{T}_{1}$. Using weakening on the other given derivation $(\Gamma \vdash s: S)$, we obtain $\Gamma, \mathrm{y}: \mathrm{T}_{2} \vdash \mathrm{~s}: \mathrm{S}$. Now, by the induction hypothesis, $\Gamma, \mathrm{y}: \mathrm{T}_{2} \vdash[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}_{1}: \mathrm{T}_{1}$. By T-ABS, $\Gamma \vdash \lambda \mathrm{y}: \mathrm{T}_{2} .[\mathrm{x} \mapsto \mathrm{s}] \mathrm{t}_{1}: \mathrm{T}_{2} \rightarrow \mathrm{~T}_{1}$, i.e. (by the definition of substitution), $\Gamma \vdash[\mathrm{x} \mapsto \mathrm{s}] \lambda \mathrm{y}: \mathrm{T}_{2} . \mathrm{t}_{1}: \mathrm{T}_{2} \rightarrow \mathrm{~T}_{1}$.

