CIS 500 Software Foundations Fall 2006 October 9	Review
Church encoding of lists	Church encoding of lists will not be on the exam. :-) Briefly, though, here's the intuition: $c_4 = \lambda s. \lambda z. s (s (s (s z)))$
Church encoding of lists will not be on the exam. :-) Briefly, though, here's the intuition: $c_4 = \lambda s. \lambda z. s (s (s (s z)))$ $[v_1; v_2; v_3; v_4] = \lambda s. \lambda z. s v_1 (s v_2 (s v_3 (s v_4 z)))$	<pre>Typing derivations Exercise 9.2.2: Show (by drawing derivation trees) that the following terms have the indicated types: 1. f:Bool→Bool⊢f (if false then true else false) : Bool 2. f:Bool→Bool⊢</pre>

The two typing relations	The two typing relations
Question: What is the relation between these two statements? 1. t : T 2. ⊢ t : T	 Question: What is the relation between these two statements? 1. t : T 2. ⊢ t : T First answer: These two relations are completely different things. We are dealing with several different small programming languages, each with its own typing relation (between terms in that language and types in that language) For the simple language of numbers and booleans, typing is a binary relation between terms and types (t : T). For λ→, typing is a ternary relation between contexts, terms, and types (Γ ⊢ t : T). (When the context is empty — because the term has no free variables — we often write ⊢ t : T to mean Ø ⊢ t : T.)
 Second answer: The typing relation for λ_, conservatively extends the one for the simple language of numbers and booleans. Write "language 1" for the language of numbers and booleans and "language 2" for the simply typed lambda-calculus with base types Nat and Bool. The terms of language 2 include all the terms of language 1; similarly typing rules. Write t :1 T for the typing relation of language 1. Write Γ ⊢ t :2 T for the typing relation of language 2. Theorem: Language 2 conservatively extends language 1: If t is a term of language 1 (involving only booleans, conditions, numbers, and numeric operators) and T is a type of language 1 (either Bool or Nat), then t :1 T iff Ø ⊢ t :2 T. 	Preservation (and Weaking, Permutation, Substitution)
 Review: Proving progress Let's quickly review the steps in the proof of the progress theorem: inversion lemma for typing relation canonical forms lemma progress theorem 	<pre>Inversion Lemma: 1. If <math>\Gamma \vdash true : R, then R = Bool. 2. If <math>\Gamma \vdash false : R, then R = Bool. 3. If <math>\Gamma \vdash if t_1 then t_2 else t_3 : R, then \Gamma \vdash t_1 : Bool and \Gamma \vdash t_2, t_3 : R. 4. If $\Gamma \vdash x : R, then$</math></math></math></pre>

	-
<pre>Inversion Lemma: 1. If $\Gamma \vdash true : R$, then $R = Bool$. 2. If $\Gamma \vdash false : R$, then $R = Bool$. 3. If $\Gamma \vdash if t_1$ then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 : Bool$ and $\Gamma \vdash t_2, t_3 : R$. 4. If $\Gamma \vdash x : R$, then $x: R \in \Gamma$. 5. If $\Gamma \vdash \lambda x: T_1 \cdot t_2 : R$, then</pre>	<pre>Inversion Lemma: 1. If $\Gamma \vdash true : R$, then $R = Bool$. 2. If $\Gamma \vdash false : R$, then $R = Bool$. 3. If $\Gamma \vdash if t_1$ then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 : Bool$ and $\Gamma \vdash t_2, t_3 : R$. 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$. 5. If $\Gamma \vdash \lambda x : T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$. 6. If $\Gamma \vdash t_1 t_2 : R$, then</pre>
<pre>Inversion Lemma: 1. If $\Gamma \vdash true : R$, then $R = Bool$. 2. If $\Gamma \vdash false : R$, then $R = Bool$. 3. If $\Gamma \vdash if t_1$ then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 : Bool$ and $\Gamma \vdash t_2, t_3 : R$. 4. If $\Gamma \vdash x : R$, then $x: R \in \Gamma$. 5. If $\Gamma \vdash \lambda x: T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x: T_1 \vdash t_2 : R_2$. 6. If $\Gamma \vdash t_1 t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.</pre>	Canonical Forms Lemma:
Canonical Forms	Progress

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type $\mathtt{T}_1{\rightarrow}\mathtt{T}_2,$ then v has the form $\lambda\mathtt{x}\!:\!\mathtt{T}_1\!\cdot\!\mathtt{t}_2.$

Progress

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t^\prime with $\mathtt{t} \longrightarrow \mathtt{t}'.$

Preservation

 $\textit{Theorem: If } \Gamma \vdash t \ : \ T \text{ and } t \longrightarrow t', \text{ then } \Gamma \vdash t' \ : \ T.$

Steps of proof:

- Weakening
- Permutation
- Substitution preserves types
- Reduction preserves types (i.e., preservation)

Weakening and Permutation

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

Lemma: If $\Gamma \vdash t$: T and $x \notin dom(\Gamma)$, then $\Gamma, x: S \vdash t : T$.

Weakening and Permutation

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

Lemma: If $\Gamma \vdash t$: T and $x \notin dom(\Gamma)$, then $\Gamma, x: S \vdash t : T$.

Permutation tells us that the order of assumptions in (the list) $\ensuremath{\mathsf{\Gamma}}$ does not matter.

Lemma: If $\Gamma \vdash t$: T and Δ is a permutation of Γ , then $\Delta \vdash t$: T.

Weakening and Permutation

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

Lemma: If $\Gamma \vdash t$: T and $x \notin dom(\Gamma)$, then $\Gamma, x: S \vdash t$: T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ does not matter.

Lemma: If $\Gamma \vdash t$: T and Δ is a permutation of Γ , then $\Delta \vdash t$: T.

Moreover, the latter derivation has the same depth as the former.

Preservation

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T. *Proof:* By induction

Preservation

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T. *Proof:* By induction on typing derivations. Which case is the hard one??

Preservation

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

Preservation

 $\begin{array}{l} \textit{Theorem:} \mbox{ If } \Gamma \vdash t \ : \ T \ and \ t \longrightarrow t', \ then \ \Gamma \vdash t' \ : \ T. \\ \textit{Proof:} \ By \ induction \ on \ typing \ derivations. \\ \textit{Case } T-APP: \ \ Given \ \ t = t_1 \ t_2 \\ \Gamma \vdash t_1 \ : \ T_{11} \longrightarrow T_{12} \\ \Gamma \vdash t_2 \ : \ T_{11} \\ T = T_{12} \\ \textit{Show} \ \ \Gamma \vdash t' \ : \ T_{12} \\ \textit{By the inversion lemma for evaluation, there are three subcases...} \end{array}$

Preservation

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

Preservation

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

```
\label{eq:constraint} \begin{array}{c} \Gamma \vdash t_1 \,:\, T_{11} {\rightarrow} T_{12} \\ \Gamma \vdash t_2 \,:\, T_{11} \\ T = T_{12} \\ Show \quad \Gamma \vdash t' \,:\, T_{12} \end{array} By the inversion lemma for evaluation, there are three subcases... Subcase: \begin{array}{c} t_1 = \lambda x {:} T_{11} . \ t_{12} \\ t_2 \text{ a value } v_2 \\ t' = [x \mapsto v_2] t_{12} \end{array} Uh oh.
```

Preservation

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

The "Substitution Lemma"

 $\label{eq:lemma:lemma:lemma:lemma:lemma:lf} \ensuremath{\mathsf{Lemma:lf}}\xspace{-1mu} \ensuremath{\mathsf{T}}\xspace{-1mu} \ensuremath{\mathsf{Lemma:lemmath{\mathsf{T}}}\xspace{-1mu} \ensuremath{\mathsf{T}}\xspace{-1mu} \ensuremath{\mathsf{T}}\xspac$

	Т
The "Substitution Lemma"	The "Substitution Lemma"
Lemma: If Γ , $x:S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$. <i>Proof:</i> By induction on the <i>depth</i> of a derivation of Γ , $x:S \vdash t : T$. Proceed by cases on the final typing rule used in the derivation.	Lemma: If Γ , $x:S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$. <i>Proof:</i> By induction on the <i>depth</i> of a derivation of Γ , $x:S \vdash t : T$. Proceed by cases on the final typing rule used in the derivation.
The "Substitution Lemma" Lemma: If Γ , $x: S \vdash t$: T and $\Gamma \vdash s$: S, then $\Gamma \vdash [x \mapsto s]t$: T. Proof: By induction on the <i>depth</i> of a derivation of Γ , $x: S \vdash t$: T. Proceed by cases on the final typing rule used in the derivation. Case T-APP: $t = t_1 t_2$ Γ , $x: S \vdash t_1 : T_2 \rightarrow T_1$ Γ , $x: S \vdash t_2 : T_2$ $T = T_1$ By the induction hypothesis, $\Gamma \vdash [x \mapsto s]t_1 : T_2 \rightarrow T_1$ and $\Gamma \vdash [x \mapsto s]t_2 : T_2$. By T-APP, $\Gamma \vdash [x \mapsto s]t_1 : x \mapsto s]t_2 : T$, i.e., $\Gamma \vdash [x \mapsto s](t_1 t_2) : T$.	The "Substitution Lemma" Lemma: If Γ , $x:S \vdash t$: T and $\Gamma \vdash s$: S, then $\Gamma \vdash [x \mapsto s]t$: T. Proof: By induction on the <i>depth</i> of a derivation of Γ , $x:S \vdash t$: T. Proceed by cases on the final typing rule used in the derivation. Case T-VAR: $t = z$ with $z:T \in (\Gamma, x:S)$ There are two sub-cases to consider, depending on whether z is x or another variable. If $z = x$, then $[x \mapsto s]z = s$. The required result is then $\Gamma \vdash s$: S, which is among the assumptions of the lemma. Otherwise, $[x \mapsto s]z = z$, and the desired result is immediate.
The "Substitution Lemma" Lemma: If Γ , $x: S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.	

Proof: By induction on the *depth* of a derivation of $\Gamma, x: S \vdash t : T$. Proceed by cases on the final typing rule used in the derivation.

By our conventions on choice of bound variable names, we may assume $x \neq y$ and $y \notin FV(s)$. Using *permutation* on the given subderivation, we obtain $\Gamma, y: T_2, x: S \vdash t_1 : T_1$. Using *weakening* on the other given derivation ($\Gamma \vdash s : S$), we obtain $\Gamma, y: T_2 \vdash s : S$. Now, by the induction hypothesis, $\Gamma, y: T_2 \vdash [x \mapsto s]t_1 : T_1$. By T-ABS, $\Gamma \vdash \lambda y: T_2$. $[x \mapsto s]t_1 : T_2 \rightarrow T_1$, i.e. (by the definition of substitution), $\Gamma \vdash [x \mapsto s]\lambda y: T_2 \cdot t_1 : T_2 \rightarrow T_1$.