CIS 500 Software Foundations Fall 2006

October 9

Review

Church encoding of lists

Church encoding of lists

... will not be on the exam. :-)

Briefly, though, here's the intuition:

$$c_4 = \lambda s. \lambda z. s (s (s (s z)))$$

Church encoding of lists

```
... will not be on the exam. :-)
```

Briefly, though, here's the intuition:

```
c_4 = \lambda s. \ \lambda z. \ s \ (s \ (s \ z)))

[v_1; v_2; v_3; v_4] = \lambda s. \ \lambda z. \ s \ v_1 \ (s \ v_2 \ (s \ v_3 \ (s \ v_4 \ z)))
```

Typing derivations

Exercise 9.2.2: Show (by drawing derivation trees) that the following terms have the indicated types:

```
1. f:Bool \rightarrow Bool \vdash f (if false then true else false):
Bool
```

```
2. f:Bool\rightarrowBool\vdash \lambdax:Bool. f (if x then false else x) : Bool\rightarrowBool
```

The two typing relations

Question: What is the relation between these two statements?

- 1. t: T
- 2. ⊢ t : T

The two typing relations

Question: What is the relation between these two statements?

```
1. t : T
2. ⊢ t : T
```

First answer: These two relations are completely different things.

- ▶ We are dealing with several different small programming languages, each with its own typing relation (between terms in that language and types in that language)
- ► For the simple language of numbers and booleans, typing is a binary relation between terms and types (t: T).
- ▶ For λ_{\rightarrow} , typing is a *ternary* relation between contexts, terms, and types ($\Gamma \vdash t : T$).

(When the context is empty — because the term has no free variables — we often write $\vdash t : T$ to mean $\emptyset \vdash t : T$.)

Conservative extension

Second answer: The typing relation for λ_{\rightarrow} conservatively extends the one for the simple language of numbers and booleans.

- ▶ Write "language 1" for the language of numbers and booleans and "language 2" for the simply typed lambda-calculus with base types Nat and Bool.
- ► The terms of language 2 include all the terms of language 1; similarly typing rules.
- ▶ Write t: 1 T for the typing relation of language 1.
- ▶ Write $\Gamma \vdash t :_2 T$ for the typing relation of language 2.
- Theorem: Language 2 conservatively extends language 1: If t is a term of language 1 (involving only booleans, conditions, numbers, and numeric operators) and T is a type of language 1 (either Bool or Nat), then t :₁ T iff ∅ ⊢ t :₂ T.

Preservation (and Weaking, Permutation, Substitution)

Review: Proving progress

Let's quickly review the steps in the proof of the progress theorem:

- inversion lemma for typing relation
- canonical forms lemma
- progress theorem

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 :$ Bool and $\Gamma \vdash t_2, t_3 : R$.
- 4. If $\Gamma \vdash x : R$, then

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 :$ Bool and $\Gamma \vdash t_2, t_3 : R$.
- 4. If $\Gamma \vdash x : R$, then $x:R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x:T_1.t_2:R$, then

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 :$ Bool and $\Gamma \vdash t_2, t_3 : R$.
- 4. If $\Gamma \vdash x : R$, then $x:R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x: T_1 \vdash t_2 : R_2$.
- 6. If $\Gamma \vdash t_1 \ t_2 : \mathbb{R}$, then

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash$ if t_1 then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 :$ Bool and $\Gamma \vdash t_2, t_3 : R$.
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1.t_2: R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x: T_1 \vdash t_2: R_2$.
- 6. If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.

Canonical Forms

Canonical Forms

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type $T_1 \rightarrow T_2$, then v has the form $\lambda x: T_1 \cdot t_2$.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Theorem: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Steps of proof:

- Weakening
- Permutation
- Substitution preserves types
- ▶ Reduction preserves types (i.e., preservation)

Weakening and Permutation

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

Lemma: If $\Gamma \vdash t : T$ and $x \notin dom(\Gamma)$, then $\Gamma, x : S \vdash t : T$.

Weakening and Permutation

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

```
Lemma: If \Gamma \vdash t : T and x \notin dom(\Gamma), then \Gamma, x : S \vdash t : T.
```

Permutation tells us that the order of assumptions in (the list) Γ does not matter.

Lemma: If $\Gamma \vdash t : T$ and Δ is a permutation of Γ , then $\Delta \vdash t : T$.

Weakening and Permutation

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

Lemma: If $\Gamma \vdash t : T$ and $x \notin dom(\Gamma)$, then $\Gamma, x : S \vdash t : T$.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ does not matter.

Lemma: If $\Gamma \vdash t : T$ and Δ is a permutation of Γ , then $\Delta \vdash t : T$.

Moreover, the latter derivation has the same depth as the former.

Theorem: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction

Theorem: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on typing derivations.

Which case is the hard one??

```
Theorem: If \Gamma \vdash t : T and t \longrightarrow t', then \Gamma \vdash t' : T.

Proof: By induction on typing derivations.

Case T-APP: Given t = t_1 \ t_2
\Gamma \vdash t_1 : T_{11} \longrightarrow T_{12}
\Gamma \vdash t_2 : T_{11}
T = T_{12}
Show \Gamma \vdash t' : T_{12}
```

```
Theorem: If \Gamma \vdash t : T and t \longrightarrow t', then \Gamma \vdash t' : T.

Proof: By induction on typing derivations.

Case T-APP: Given t = t_1 \ t_2
\Gamma \vdash t_1 : T_{11} \longrightarrow T_{12}
\Gamma \vdash t_2 : T_{11}
T = T_{12}
Show \Gamma \vdash t' : T_{12}
```

By the inversion lemma for evaluation, there are three subcases...

```
Theorem: If \Gamma \vdash t : T and t \longrightarrow t', then \Gamma \vdash t' : T.
Proof: By induction on typing derivations.
Case T-APP: Given t = t_1 t_2
                                    \Gamma \vdash t_1 : T_{11} \rightarrow T_{12}
                                    \Gamma \vdash \mathsf{t}_2 : \mathsf{T}_{11}
                                    T = T_{12}
                        Show \Gamma \vdash t' : T_{12}
By the inversion lemma for evaluation, there are three subcases...
Subcase: t_1 = \lambda x : T_{11}. t_{12}
                to a value vo
                \mathsf{t}' = [\mathsf{x} \mapsto \mathsf{v}_2] \mathsf{t}_{12}
```

```
Theorem: If \Gamma \vdash t : T and t \longrightarrow t', then \Gamma \vdash t' : T.
```

Proof: By induction on typing derivations.

```
Case T-APP: Given \begin{array}{ccc} t=t_1 & t_2 \\ \Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \\ \Gamma \vdash t_2 : T_{11} \\ T=T_{12} \\ \text{Show} & \Gamma \vdash t' : T_{12} \end{array}
```

By the inversion lemma for evaluation, there are three subcases...

Uh oh.

```
Theorem: If \Gamma \vdash t : T and t \longrightarrow t', then \Gamma \vdash t' : T.
```

Proof: By induction on typing derivations.

```
\begin{array}{lll} \text{Case $T$-APP:} & \text{Given} & \texttt{t} = \texttt{t}_1 \ \texttt{t}_2 \\ & \Gamma \vdash \texttt{t}_1 : \texttt{T}_{11} {\rightarrow} \texttt{T}_{12} \\ & \Gamma \vdash \texttt{t}_2 : \texttt{T}_{11} \\ & \texttt{T} = \texttt{T}_{12} \\ & \text{Show} & \Gamma \vdash \texttt{t}' : \texttt{T}_{12} \end{array}
```

By the inversion lemma for evaluation, there are three subcases...

Subcase:
$$t_1 = \lambda x : T_{11}$$
. t_{12}
 t_2 a value v_2
 $t' = [x \mapsto v_2]t_{12}$

Uh oh. What do we need to know to make this case go through??

Lemma: If Γ , $x:S \vdash t:T$ and $\Gamma \vdash s:S$, then $\Gamma \vdash [x \mapsto s]t:T$. I.e., "Types are preserved under substitition."

Lemma: If Γ , x:S \vdash t : T and Γ \vdash s : S, then Γ \vdash [x \mapsto s]t : T.

Proof: By induction on the *depth* of a derivation of Γ , $x:S \vdash t:T$. Proceed by cases on the final typing rule used in the derivation.

Lemma: If Γ , x:S \vdash t : T and Γ \vdash s : S, then Γ \vdash [x \mapsto s]t : T.

Proof: By induction on the *depth* of a derivation of Γ , $x:S \vdash t:T$. Proceed by cases on the final typing rule used in the derivation.

Lemma: If Γ , x:S \vdash t : T and Γ \vdash s : S, then Γ \vdash [x \mapsto s]t : T.

Proof: By induction on the *depth* of a derivation of Γ , x:S \vdash t : T. Proceed by cases on the final typing rule used in the derivation.

```
Case T-APP: \begin{array}{ll} t=t_1 & t_2 \\ \Gamma, \, x\colon\! S \vdash t_1 \, : \, T_2 \!\to\! T_1 \\ \Gamma, \, x\colon\! S \vdash t_2 \, : \, T_2 \\ T=T_1 \end{array}
```

By the induction hypothesis, $\Gamma \vdash [x \mapsto s]t_1 : T_2 \rightarrow T_1$ and $\Gamma \vdash [x \mapsto s]t_2 : T_2$. By T-APP, $\Gamma \vdash [x \mapsto s]t_1 \ [x \mapsto s]t_2 : T$, i.e., $\Gamma \vdash [x \mapsto s](t_1 \ t_2) : T$.

Lemma: If Γ , x:S \vdash t : T and Γ \vdash s : S, then Γ \vdash [x \mapsto s]t : T.

Proof: By induction on the *depth* of a derivation of Γ , $x:S \vdash t:T$. Proceed by cases on the final typing rule used in the derivation.

```
Case T-VAR: t = z with z:T \in (\Gamma, x:S)
```

There are two sub-cases to consider, depending on whether z is x or another variable. If z=x, then $[x\mapsto s]z=s$. The required result is then $\Gamma\vdash s:S$, which is among the assumptions of the lemma. Otherwise, $[x\mapsto s]z=z$, and the desired result is immediate.

Lemma: If Γ , x:S \vdash t : T and Γ \vdash s : S, then Γ \vdash [x \mapsto s]t : T.

Proof: By induction on the *depth* of a derivation of Γ , $x:S \vdash t:T$. Proceed by cases on the final typing rule used in the derivation.

Case T-ABS:
$$t = \lambda y : T_2 \cdot t_1$$
 $T = T_2 \rightarrow T_1$
 $\Gamma, x : S, y : T_2 \vdash t_1 : T_1$

By our conventions on choice of bound variable names, we may assume $x \neq y$ and $y \notin FV(s)$. Using permutation on the given subderivation, we obtain Γ , $y:T_2$, $x:S \vdash t_1:T_1$. Using weakening on the other given derivation ($\Gamma \vdash s:S$), we obtain Γ , $y:T_2 \vdash s:S$. Now, by the induction hypothesis, Γ , $y:T_2 \vdash [x \mapsto s]t_1:T_1$. By T-ABS, $\Gamma \vdash \lambda y:T_2$. $[x \mapsto s]t_1:T_2 \rightarrow T_1$, i.e. (by the definition of substitution), $\Gamma \vdash [x \mapsto s]\lambda y:T_2$. $t_1:T_2 \rightarrow T_1$.