CIS 500
 Software Foundations Fall 2006

Any Questions?

October 16

Plan
"We have the technology..."

- In this lecture and the next, we're going to cover some simple extensions of the typed-lambda calculus (TAPL Chapter 11).

1. Products, records
2. Sums, variants
3. Recursion

- We're skipping Chapters 10 and 12.

Erasure and Typability

Erasure

We can transform terms in λ_{\rightarrow} to terms of the untyped lambda-calculus simply by erasing type annotations on lambda-abstractions.

```
erase(x) = x
erase(\lambdax:T1. t2 ) = \lambdax. erase(t2)
erase(t}\mp@subsup{t}{1}{}\mp@subsup{t}{2}{})=\operatorname{erase}(\mp@subsup{t}{1}{})\operatorname{erase}(\mp@subsup{t}{2}{}
```


Typability

Conversely, an untyped λ-term m is said to be typable if there is some term t in the simply typed lambda-calculus, some type T, and some context Γ such that erase $(\mathrm{t})=\mathrm{m}$ and $\Gamma \vdash \mathrm{t}: \mathrm{T}$.

This process is called type reconstruction or type inference.

Typability

Conversely, an untyped λ-term m is said to be typable if there is some term t in the simply typed lambda-calculus, some type T, and some context Γ such that erase $(\mathrm{t})=\mathrm{m}$ and $\Gamma \vdash \mathrm{t}: \mathrm{T}$.
This process is called type reconstruction or type inference.
Example: Is the term

The Curry-Howard Correspondence

typable?

Intro vs. elim forms

An introduction form for a given type gives us a way of constructing elements of this type.
An elimination form for a type gives us a way of using elements of this type.

The Curry-Howard Correspondence

In constructive logics, a proof of P must provide evidence for P.

- "law of the excluded middle" - $P \vee \neg P$ - not recognized.

A proof of $P \wedge Q$ is a pair of evidence for P and evidence for Q.
A proof of $P \supset Q$ is a procedure for transforming evidence for P into evidence for Q.

Propositions as Types

LoGic	Programming languages
propositions	types
proposition $P \supset Q$	type $P \rightarrow Q$
proposition $P \wedge Q$	type $P \times Q$
proof of proposition P	term t of type P
proposition P is provable	type P is inhabited (by some term) evaluation

Propositions as Types

LOGIC	Programming languages
propositions	types
proposition $P \supset Q$	type $P \rightarrow Q$
proposition $P \wedge Q$	type $P \times Q$
proof of proposition P	term t of type P
proposition P is provable	type P is inhabited (by some term)
proof simplification	
\quad (a.k.a. "cut elimination")	

On to real programming languages...

The Unit type

$\text { t }::=$	unit	terms constant unit
v : $=$	unit	values constant unit
T :	Unit	types unit type

New typing rules

Base types

Up to now, we've formulated "base types" (e.g. Nat) by adding them to the syntax of types, extending the syntax of terms with associated constants (zero) and operators (succ, etc.) and adding appropriate typing and evaluation rules. We can do this for as many base types as we like.

For more theoretical discussions (as opposed to programming) we can often ignore the term-level inhabitants of base types, and just treat these types as uninterpreted constants.
E.g., suppose B and C are some base types. Then we can ask (without knowing anything more about B or C) whether there are any types S and T such that the term
$(\lambda f: S . \lambda g: T . f g)(\lambda x: B . x)$
is well typed.

Sequencing

$\mathrm{t}::=$..

terms

$$
\mathrm{t}_{1} ; \mathrm{t}_{2}
$$

Sequencing

$$
\begin{aligned}
\mathrm{t}::= & \cdots & \text { terms } \\
& \mathrm{t}_{1} ; \mathrm{t}_{2} &
\end{aligned}
$$

Derived forms

- Syntatic sugar
- Internal language vs. external (surface) language

Sequencing as a derived form

$$
\begin{aligned}
& \mathrm{t}_{1} ; \mathrm{t}_{2} \stackrel{\text { def }}{=} \quad\left(\lambda \mathrm{x}: \text { Unit. } \mathrm{t}_{2}\right) \mathrm{t}_{1} \\
& \text { where } \mathrm{x} \notin F V\left(\mathrm{t}_{2}\right)
\end{aligned}
$$

Equivalence of the two definitions
[board]

Ascription

Ascription as a derived form
t as $\mathrm{T} \stackrel{\text { def }}{=}(\lambda \mathrm{x}: \mathrm{T} . \mathrm{x}) \mathrm{t}$

New syntactic forms
$\mathrm{t}::=$...
t as T
New evaluation rules

terms

 ascription
New typing rules

$$
\begin{array}{cr}
& \boxed{t \longrightarrow t^{\prime}} \\
\mathrm{v}_{1} \text { as } \mathrm{T} \longrightarrow \mathrm{v}_{1} & (\mathrm{E}-\mathrm{AsCRIBE}) \\
\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime} \\
\hline \mathrm{t}_{1} \text { as } \mathrm{T} \longrightarrow \mathrm{t}_{1}^{\prime} \text { as } \mathrm{T} & \text { (E-AsCRIBE1) } \\
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}}{\Gamma \vdash \mathrm{t}_{1} \text { as } \mathrm{T}: \mathrm{T}} & \text { (T-ASCRIBE) }
\end{array}
$$

Let-bindings

New syntactic forms

$\begin{aligned} \mathrm{t}::= & \ldots \\ & \text { let } \mathrm{x}=\mathrm{t} \text { in } \mathrm{t}\end{aligned}$
New evaluation rules

$$
\text { let } \mathrm{x}=\mathrm{v}_{1} \text { in } \mathrm{t}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{1}\right] \mathrm{t}_{2} \quad(\mathrm{E}-\mathrm{LETV})
$$

$$
\frac{t_{1} \longrightarrow t_{1}^{\prime}}{\text { let } x=t_{1} \text { in } t_{2} \longrightarrow \text { let } x=t_{1}^{\prime} \text { in } t_{2}} \quad(\mathrm{E}-\mathrm{LET})
$$

New typing rules
$\Gamma \vdash \mathrm{t}: \mathrm{T}$

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1} \quad \Gamma, \mathrm{x}: \mathrm{T}_{1} \vdash \mathrm{t}_{2}: \mathrm{T}_{2}}{\Gamma \vdash \text { let } \mathrm{x}=\mathrm{t}_{1} \text { in } \mathrm{t}_{2}: \mathrm{T}_{2}} \tag{T-LET}
\end{equation*}
$$

Pairs, tuples, and records

Pairs

$\mathrm{t}::=$		terms
	$\{\mathrm{t}, \mathrm{t}\}$	pair
	t .1	
	t .2	first projection
$\mathrm{v}::=$	\ldots	second projection
	$\{\mathrm{v}, \mathrm{v}\}$	
		values
$\mathrm{T}::=$	\ldots	pair value
	$\mathrm{T}_{1} \times \mathrm{T}_{2}$	types
		product type

terms
first projection second projection

values

pair value
types
product type

Evaluation rules for pairs

$$
\begin{array}{cr}
\begin{array}{c}
\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\} .1 \longrightarrow \mathrm{v}_{1} \\
\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\} .2 \longrightarrow \mathrm{v}_{2}
\end{array} & \begin{array}{r}
\text { (E-PAIRBETA1) } \\
\text { (E-PAIRBETA2) }
\end{array} \\
\frac{\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}}{\mathrm{t}_{1} \cdot 1 \longrightarrow \mathrm{t}_{1}^{\prime} \cdot 1} & (\text { E-PROJ1) } \\
\frac{\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}}{\mathrm{t}_{1} \cdot 2 \longrightarrow \mathrm{t}_{1}^{\prime} \cdot 2} & (\text { E-PROJ2) } \\
\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime} & \text { (E-PAIR1) } \\
\frac{\left.\mathrm{t}_{1}, \mathrm{t}_{2}\right\} \longrightarrow\left\{\mathrm{t}_{1}^{\prime}, \mathrm{t}_{2}\right\}}{} & \text { (E-PAIR2) } \\
\frac{\mathrm{t}_{2} \longrightarrow \mathrm{t}_{2}^{\prime}}{\left\{\mathrm{v}_{1}, \mathrm{t}_{2}\right\} \longrightarrow\left\{\mathrm{v}_{1}, \mathrm{t}_{2}^{\prime}\right\}} &
\end{array}
$$

Tuples
(T-Proj1)

$$
\begin{gather*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{2}}{\Gamma \vdash\left\{\mathrm{t}_{1}, \mathrm{t}_{2}\right\}: \mathrm{T}_{1} \times \mathrm{T}_{2}} \tag{T-PAIR}\\
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \times \mathrm{T}_{12}}{\Gamma \vdash \mathrm{t}_{1} \cdot 1: \mathrm{T}_{11}} \tag{T-Proj1}\\
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \times \mathrm{T}_{12}}{\Gamma \vdash \mathrm{t}_{1} \cdot 2: \mathrm{T}_{12}}
\end{gather*}
$$

Typing rules for pairs
$\mathrm{t}::=$

$\mathrm{t}::=$		terms
	$\left\{\mathrm{t}_{i}{ }^{i \in 1 . . n\}}\right.$	tuple
	$\mathrm{t} . \mathrm{i}$	projection

$\mathrm{t}::=$	\ldots	terms
	$\left\{\mathrm{t}_{i}{ }^{i \in 1 . . n\}}\right.$	tuple
	$\mathrm{t} . \mathrm{i}$	projection

$\mathrm{v}::=\underset{\left\{\mathrm{v}_{i}{ }^{i \in 1 \ldots n\}}\right.}{ }$
$\mathrm{T}::=\ldots$ types $\left\{\mathrm{T}_{i}{ }^{i \in 1 \ldots n\}}\right.$

Evaluation rules for tuples

$$
\begin{aligned}
& \left\{\mathrm{v}_{\mathrm{i}}{ }^{i \in 1 . . n\}} . \mathrm{j} \longrightarrow \mathrm{v}_{j} \quad\right. \text { (E-ProjTuple) } \\
& \frac{t_{1} \longrightarrow t_{1}^{\prime}}{t_{1} \cdot \dot{i} \longrightarrow t_{1}^{\prime} \cdot \dot{i}} \\
& \frac{\mathrm{t}_{j} \longrightarrow \mathrm{t}_{j}^{\prime}}{\left\{\mathrm{v}_{i}{ }^{i \in 1 \ldots j-1}, \mathrm{t}_{j}, \mathrm{t}_{k}{ }^{k \in+1+. . n\}}\right.} \\
& \longrightarrow\left\{\mathrm{v}_{i}{ }^{i \in 1 . . j-1}, \mathrm{t}_{j}^{\prime}, \mathrm{t}_{k}{ }^{k \in j+1 . . n}\right\}
\end{aligned}
$$

Typing rules for tuples

$$
\begin{gather*}
\frac{\text { for each } i \quad \Gamma \vdash \mathrm{t}_{i}: \mathrm{T}_{i}}{\Gamma \vdash\left\{\mathrm{t}_{i}{ }^{i \in 1 \ldots n\}}:\left\{\mathrm{T}_{i}{ }^{i \in 1 \ldots n}\right\}\right.} \tag{T-Tuple}\\
\frac{\Gamma \vdash \mathrm{t}_{1}:\left\{\mathrm{T}_{i}{ }^{i \in 1 \ldots n\}}\right.}{\Gamma \vdash \mathrm{t}_{1} \cdot \mathrm{j}: \mathrm{T}_{j}}
\end{gather*}
$$

(T-PRoJ)

Records

t ::=	$\begin{aligned} & \left\{1_{i}=\mathrm{t}_{i}{ }^{i \in 1 . . n\}}\right. \\ & \mathrm{t} .1 \end{aligned}$	terms record projection
v : $:$	$\left\{1_{i}=\mathrm{v}_{i}{ }^{i \in 1 . . n\}}\right.$	values record value
T : $:=$	$\left\{1_{i}: T_{i}{ }^{i \in 1 . . n\}}\right.$	types type of records

Evaluation rules for records

$$
\begin{aligned}
& \left\{1_{i}=\mathrm{v}_{i}{ }^{\left.i \in 1 \ldots n\} .1_{j} \longrightarrow \mathrm{v}_{j} \quad \text { (E-PROJRCD) }\right) ~}\right. \\
& \frac{t_{1} \longrightarrow t_{1}^{\prime}}{t_{1} \cdot l \longrightarrow t_{1}^{\prime} \cdot 1} \\
& \frac{\mathrm{t}_{j} \longrightarrow \mathrm{t}_{j}^{\prime}}{\left\{\mathrm{l}_{i}=\mathrm{v}_{i}{ }^{i \in 1 . . j-1}, \mathrm{l}_{j}=\mathrm{t}_{j}, \mathrm{l}_{k}=\mathrm{t}_{k}{ }^{k \in+1 \ldots \mathrm{n}}\right\}} \\
& \longrightarrow\left\{1_{i}=\mathrm{v}_{i}{ }^{i \in 1 . . j-1}, \mathrm{l}_{j}=\mathrm{t}_{j}^{\prime}, \mathrm{l}_{k}=\mathrm{t}_{k}{ }^{k \in j+1 . . n}\right\} \\
& \text { (E-Proj) } \\
& \text { (E-Rcd) }
\end{aligned}
$$

Typing rules for records

$$
\begin{gather*}
\frac{\text { for each } i \quad \Gamma \vdash \mathrm{t}_{i}: \mathrm{T}_{i}}{\Gamma \vdash\left\{\mathrm{l}_{i}=\mathrm{t}_{i}{ }^{i \in 1 \ldots \mathrm{n}\}}:\left\{\mathrm{l}_{i}: \mathrm{T}_{i}{ }^{i \in 1 . . n}\right\}\right.} \tag{T-RcD}\\
\frac{\Gamma \vdash \mathrm{t}_{1}:\left\{\mathrm{l}_{i}: \mathrm{T}_{i}{ }^{i \in 1 . . n}\right\}}{\Gamma \vdash \mathrm{t}_{1} \cdot \mathrm{l}_{j}: \mathrm{T}_{j}} \tag{T-Proj}
\end{gather*}
$$

Sums - motivating example

```
PhysicalAddr = {firstlast:String, addr:String}
VirtualAddr = {name:String, email:String}
Addr = PhysicalAddr + VirtualAddr
inl : "PhysicalAddr }->\mathrm{ PhysicalAddr+VirtualAddr"
inr : "VirtualAddr }->\mathrm{ PhysicalAddr+VirtualAddr"
```

 getName \(=\lambda \mathrm{a}:\) Addr.
 case a of
 inl \(\mathrm{x} \Rightarrow \mathrm{x} . f\) irstlast
 | inr y \(\Rightarrow\) y.name;

Sums and variants

New syntactic forms

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{¢ : \(:=\)} & \(\ldots\) & terms \\
\hline & inl t & tagging (left) \\
\hline & inr t & tagging (right) \\
\hline & case \(t\) of inl \(x \Rightarrow t \mid\) inr \(x \Rightarrow t\) & case \\
\hline \multirow[t]{3}{*}{V} & \(\ldots\) & values \\
\hline & inl v & tagged value (left) \\
\hline & inr v & tagged value (right) \\
\hline \multirow[t]{2}{*}{T : \(:=\)} & \(\ldots\) & types \\
\hline & T+T & sum type \\
\hline
\end{tabular}
t ::= ..
    inl t
    tagging (left)
    tagging (right)
    case
v ::= ..
    inl v
    tagged value (left)
    tagged value (right)
types
    sum type
```

$\mathrm{T}_{1}+\mathrm{T}_{2}$ is a disjoint union of T_{1} and T_{2} (the tags inl and inr ensure disjointness)

New evaluation rules
$t \longrightarrow t^{\prime}$

$$
\begin{array}{ll}
\begin{array}{l}
\text { case (inl } \mathrm{v}_{0} \text {) } \\
\text { of inl } \mathrm{x}_{1} \Rightarrow \mathrm{t}_{1} \mid \text { inr } \mathrm{x}_{2} \Rightarrow \mathrm{t}_{2}
\end{array} & \longrightarrow\left[\mathrm{x}_{1} \mapsto \mathrm{v}_{0}\right] \mathrm{t}_{1}(\text { E-CASEINL) } \\
\text { case (inr } \mathrm{v}_{0} \text {) } \\
\text { of inl } \mathrm{x}_{1} \Rightarrow \mathrm{t}_{1} \mid \text { inr } \mathrm{x}_{2} \Rightarrow \mathrm{t}_{2}
\end{array} \longrightarrow\left[\mathrm{x}_{2} \mapsto \mathrm{v}_{0}\right] \mathrm{t}_{2}(\text { E-CASEINR) })
$$

$$
\frac{t_{0} \longrightarrow t_{0}^{\prime}}{\text { case } t_{0} \text { of inl } x_{1} \Rightarrow t_{1} \mid \text { inr } x_{2} \Rightarrow t_{2}}
$$

$$
\begin{gather*}
\frac{t_{1} \longrightarrow t_{1}^{\prime}}{\text { inl } t_{1} \longrightarrow \text { inl } t_{1}^{\prime}} \tag{E-InL}\\
\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime} \\
\text { inr } \mathrm{t}_{1} \longrightarrow \text { inr } \mathrm{t}_{1}^{\prime}
\end{gather*}
$$

$$
\longrightarrow \text { case } t_{0}^{\prime} \text { of inl } x_{1} \Rightarrow t_{1} \mid \text { inr } x_{2} \Rightarrow t_{2}
$$

(E-INR)

New typing rules
$\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1}}{\Gamma \vdash \operatorname{inl} \mathrm{t}_{1}: \mathrm{T}_{1}+\mathrm{T}_{2}}$
$\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{2}}{\Gamma \vdash \operatorname{inr} \mathrm{t}_{1}: \mathrm{T}_{1}+\mathrm{T}_{2}}$
$\Gamma \vdash \mathrm{t}_{0}: \mathrm{T}_{1}+\mathrm{T}_{2}$
$\frac{\Gamma, x_{1}: T_{1} \vdash t_{1}: T \quad \Gamma, x_{2}: T_{2} \vdash t_{2}: T}{\Gamma \vdash \text { case } t_{0} \text { of inl } x_{1} \Rightarrow t_{1} \mid \text { inr } x_{2} \Rightarrow t_{2}: T}(T-C A S E)$

Sums and Uniqueness of Types

Problem:

If t has type T, then inl t has type $T+U$ for every U.
I.e., we've lost uniqueness of types.

Possible solutions:

- "Infer" U as needed during typechecking
- Give constructors different names and only allow each name to appear in one sum type (requires generalization to "variants," which we'll see next) - OCaml's solution
- Annotate each inl and inr with the intended sum type.

For simplicity, let's choose the third.

New syntactic forms

```
t ::= ...
    inl t as T
    terms
    tagging (left)
    inr t as T tagging (right)
v ::= ..
values
    tagged value (left)
    tagged value (right)
```

Note that as T here is not the ascription operator that we saw before - i.e., not a separate syntactic form: in essence, there is an ascription "built into" every use of inl or inr.

$$
\begin{gather*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1}}{\Gamma \vdash \operatorname{inl} \mathrm{t}_{1} \text { as } \mathrm{T}_{1}+\mathrm{T}_{2}: \mathrm{T}_{1}+\mathrm{T}_{2}} \tag{T-InL}\\
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{2}}{\Gamma \vdash \operatorname{inr} \mathrm{t}_{1} \text { as } \mathrm{T}_{1}+\mathrm{T}_{2}: \mathrm{T}_{1}+\mathrm{T}_{2}} \tag{T-InR}
\end{gather*}
$$

Evaluation rules ignore annotations:
$t \longrightarrow t^{\prime}$

$$
\begin{align*}
& \text { case (inl } \mathrm{v}_{0} \text { as } \mathrm{T}_{0} \text {) } \\
& \text { of inl } \mathrm{x}_{1} \Rightarrow \mathrm{t}_{1} \mid \text { inr } \mathrm{x}_{2} \Rightarrow \mathrm{t}_{2} \quad \text { (E-CASEINL) } \\
& \longrightarrow\left[\mathrm{x}_{1} \mapsto \mathrm{v}_{0}\right] \mathrm{t}_{1} \\
& \text { case (inr } \mathrm{v}_{0} \text { as } \mathrm{T}_{0} \text {) } \\
& \text { of inl } x_{1} \Rightarrow t_{1} \mid \operatorname{inr} x_{2} \Rightarrow t_{2} \quad \text { (E-CASEINR) } \\
& \longrightarrow\left[\mathrm{x}_{2} \mapsto \mathrm{v}_{0}\right] \mathrm{t}_{2} \\
& \frac{\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}}{\text { inl } \mathrm{t}_{1} \text { as } \mathrm{T}_{2} \longrightarrow \text { inl } \mathrm{t}_{1}^{\prime} \text { as } \mathrm{T}_{2}} \tag{E-InL}\\
& \frac{\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}}{\text { inr } \mathrm{t}_{1} \text { as } \mathrm{T}_{2} \longrightarrow \text { inr } \mathrm{t}_{1}^{\prime} \text { as } \mathrm{T}_{2}} \tag{E-InR}
\end{align*}
$$

Variants

Just as we generalized binary products to labeled records, we can generalize binary sums to labeled variants.

New syntactic forms

$\mathrm{t}::=\ldots$ terms
<l=t> as T
case t of $\left\langle\mathrm{l}_{i}=\mathrm{x}_{i}\right\rangle \Rightarrow \mathrm{t}_{i}{ }^{i \in 1 \ldots n} \quad$ case
$\mathrm{T}::=$... $\left\langle l_{i}: \mathrm{T}_{i}{ }^{i \in 1 . . n}\right\rangle$
types type of variants

$$
\begin{align*}
& \text { case }\left(\left\langle 1_{j}=v_{j}\right\rangle \text { as } T\right) \text { of }\left\langle l_{j}=x_{i}\right\rangle \Rightarrow t_{i}{ }^{i \in 1 . . n} \\
& \longrightarrow\left[\mathrm{x}_{j} \mapsto \mathrm{v}_{j}\right] \mathrm{t}_{j} \\
& \text { (E-CASEVARIANT) } \\
& \frac{\mathrm{t}_{0} \longrightarrow \mathrm{t}_{0}^{\prime}}{\text { case } \mathrm{t}_{0} \text { of }\left\langle\mathrm{l}_{i}=\mathrm{x}_{i}\right\rangle \Rightarrow \mathrm{t}_{i}{ }^{i \in 1_{1 . n}}} \\
& \longrightarrow \text { case } \mathrm{t}_{0}^{\prime} \text { of }\left\langle l_{i}=\mathrm{x}_{i}\right\rangle \Rightarrow \mathrm{t}_{i}{ }^{i \in 1 \ldots n} \\
& \frac{\mathrm{t}_{i} \longrightarrow \mathrm{t}_{i}^{\prime}}{\left\langle l_{i}=\mathrm{t}_{i}\right\rangle \text { as } \mathrm{T} \longrightarrow\left\langle l_{i}=\mathrm{t}_{i}^{\prime}\right\rangle \text { as } \mathrm{T}} \tag{E-VARIANT}
\end{align*}
$$

Example

```
Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;
    a = <physical=pa> as Addr;
    getName = \lambdaa:Addr.
    case a of
        <physical=x> # x.firstlast
    | <virtual=y> # y.name;
```


Options

Just like in OCaml...

```
OptionalNat = <none:Unit, some:Nat>;
Table = Nat }->\mathrm{ OptionalNat;
emptyTable = \lambdan:Nat. <none=unit> as OptionalNat;
extendTable =
    \lambdat:Table. \lambdam:Nat. \lambdav:Nat.
        \lambdan:Nat.
            if equal n m then <some=v> as OptionalNat
            else t n;
x = case t(5) of
        <none=u> => 999
    | <some=v> # v;
```


Enumerations

```
Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,
                thursday:Unit, friday:Unit>;
nextBusinessDay = \lambdaw:Weekday.
    case w of <monday=x> }\quad=>\mathrm{ <tuesday=unit> as Weekday
    | <tuesday=x> }=>\mathrm{ <wednesday=unit> as Weekday
    | <wednesday=x> => <thursday=unit> as Weekday
    |thursday=x> => <friday=unit> as Weekday
    | <friday=x> }=>\mathrm{ <monday=unit> as Weekday;
```

Recursion in λ_{\rightarrow}

- In λ_{\rightarrow}, all programs terminate. (Cf. Chapter 12.)
- Hence, untyped terms like omega and fix are not typable.
- But we can extend the system with a (typed) fixed-point operator...

Example

```
ff = \lambdaie:Nat }->\mathrm{ Bool.
    \lambdax:Nat.
        if iszero x then true
        else if iszero (pred x) then false
        else ie (pred (pred x));
iseven = fix ff;
iseven 7;
```

A more convenient form
letrec $x: T_{1}=t_{1}$ in $t_{2} \stackrel{\text { def }}{=}$ let $x=$ fix $\left(\lambda x: T_{1} \cdot t_{1}\right)$ in t_{2}
letrec iseven : Nat \rightarrow Bool $=$
$\lambda \mathrm{x}$:Nat. if iszero x then true else if iszero (pred x) then false else iseven (pred (pred x))
in
iseven 7;

