CIS 500 Software Foundations Fall 2006

October 25

A Little More on References

Recap

Last time, we discussed how to formalize languages with mutable state...

Syntax

We added to λ_{\rightarrow} (with Unit) syntactic forms for creating, dereferencing, and assigning reference cells, plus a new type constructor Ref.

```
terms
                                         unit constant
unit
                                         variable
X
\lambda x:T.t.
                                         abstraction
                                         application
t t
                                         reference creation
ref t
                                         dereference
1±
                                         assignment
t := t
                                         store location
```

Evaluation

Evaluation becomes a four-place relation: t $\mid \mu \longrightarrow$ t' $\mid \mu'$

$$\frac{l \notin dom(\mu)}{\text{ref } v_1 \mid \mu \longrightarrow l \mid (\mu, l \mapsto v_1)} \qquad \text{(E-RefV)}$$

$$\frac{\mu(l) = v}{! \mid l \mid \mu \longrightarrow v \mid \mu} \qquad \text{(E-DerefLoc)}$$

$$l := v_2 \mid \mu \longrightarrow \text{unit} \mid [l \mapsto v_2] \mu \qquad \text{(E-Assign)}$$

(Plus several congruence rules.)

Typing

Typing becomes a three-place relation: $\Gamma \mid \Sigma \vdash t : T$

$$rac{\Sigma(I) = T_1}{\Gamma \mid \Sigma \vdash I : Ref \ T_1}$$
 (T-Loc)

$$\frac{\Gamma \mid \Sigma \vdash \text{ref } t_1 : \text{Ref } T_1}{\Gamma \mid \Sigma \vdash \text{ref } t_1 : \text{Ref } T_1}$$
 (T-Ref)

$$\frac{\Gamma \mid \Sigma \vdash t_1 : \text{Ref } T_{11}}{\Gamma \mid \Sigma \vdash !t_1 : T_{11}}$$
 (T-Deref)

$$\frac{\Gamma \mid \Sigma \vdash \mathsf{t}_1 : \mathsf{Ref} \ T_{11} }{\Gamma \mid \Sigma \vdash \mathsf{t}_1 : = \mathsf{t}_2 : \mathsf{Unit}} \qquad \text{(T-Assign)}$$

Preservation

Theorem: If

$$\begin{array}{c|c} \Gamma \mid \Sigma \vdash \mathbf{t} : \mathbf{T} \\ \Gamma \mid \Sigma \vdash \mu \\ \mathbf{t} \mid \mu \longrightarrow \mathbf{t}' \mid \mu' \end{array}$$
 then, for some $\Sigma' \supseteq \Sigma$,
$$\Gamma \mid \Sigma' \vdash \mathbf{t}' : \mathbf{T} \\ \Gamma \mid \Sigma' \vdash \mu'. \end{array}$$

Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\emptyset \mid \Sigma \vdash t : T$ for some T and Σ). Then either t is a value or else, for any store μ such that $\emptyset \mid \Sigma \vdash \mu$, there is some term t' and store μ' with $t \mid \mu \longrightarrow t' \mid \mu'$.

Nontermination via references

There are well-typed terms in this system that are not strongly normalizing. For example:

```
t1 = \lambdar:Ref (Unit\rightarrowUnit).

(r := (\lambdax:Unit. (!r)x);

(!r) unit);

t2 = ref (\lambdax:Unit. x);
```

Applying t1 to t2 yields a (well-typed) divergent term.

Recursion via references

Indeed, we can define arbitrary recursive functions using references.

1. Allocate a ref cell and initialize it with a dummy function of the appropriate type:

```
fact_{ref} = ref (\lambda n:Nat.0)
```

2. Define the body of the function we are interested in, using the contents of the reference cell for making recursive calls:

```
fact_{body} = \lambda n: Nat.
if iszero n then 1 else times n ((!fact_{ref})(pred n))
```

3. "Backpatch" by storing the real body into the reference cell:

```
fact_{ref} := fact_{body}
```

4. Extract the contents of the reference cell and use it as desired:

```
fact = !fact<sub>ref</sub>
fact 5
```

Exceptions

Motivation

Most programming languages provide some mechanism for interrupting the normal flow of control in a program to signal some exceptional condition.

Note that it is always *possible* to program without exceptions — instead of raising an exception, we return None; instead of returning result x normally, we return Some(x). But now we need to wrap every function application in a case to find out whether it returned a result or an exception.

It is much more convenient to build this mechanism into the language.

Varieties of non-local control

There are many ways of adding "non-local control flow"

- ▶ exit(1)
- ► goto
- ► setjmp/longjmp
- raise/try (or catch/throw) in many variations
- callcc / continuations
- more esoteric variants (cf. many Scheme papers)

Let's begin with the simplest of these.

An "abort" primitive in λ_{\rightarrow}

First step: raising exceptions (but not catching them).

Evaluation

error
$$t_2 \longrightarrow error$$
 (E-AppErr1)

$$v_1 = rror \longrightarrow error$$
 (E-AppErr2)

What if we had booleans and numbers in the language?

Typing

Typing

 $\Gamma \vdash \text{error} : T$ (T-Error)

Typing errors

Note that the typing rule for error allows us to give it any type T.

$$\Gamma \vdash \text{error} : T$$
 (T-Error)

This means that both

```
if x>0 then 5 else error
```

and

if x>0 then true else error

will typecheck.

Aside: Syntax-directedness

Note that this rule

$$\Gamma \vdash \text{error} : T$$
 (T-Error)

has a problem from the point of view of implementation: it is not syntax directed.

This will cause the Uniqueness of Types theorem to fail.

For purposes of defining the language and proving its type safety, this is not a problem — Uniqueness of Types is not critical. Let's think a little, though, about how the rule might be fixed...

An alternative

Can't we just decorate the **error** keyword with its intended type, as we have done to fix related problems with other constructs?

```
\Gamma \vdash (\text{error as } T) : T (T-Error)
```

An alternative

Can't we just decorate the **error** keyword with its intended type, as we have done to fix related problems with other constructs?

```
\Gamma \vdash (\text{error as } T) : T (T-Error)
```

No, this doesn't work!

E.g. (assuming our language also has numbers and booleans):

```
succ (if (error as Bool) then 5 else 7) \longrightarrow succ (error as Bool)
```

Exercise: Come up with a similar example using just functions and error.

Another alternative

In a system with universal polymorphism (like OCaml), the variability of typing for error can be dealt with by assigning it a variable type!

$$\Gamma \vdash \text{error} : 'a$$
 (T-Error)

In effect, we are replacing the *uniqueness of typing* property by a weaker (but still very useful) property called *most general typing*.

I.e., although a term may have many types, we always have a compact way of *representing* the set of all of its possible types.

Yet another alternative

Alternatively, in a system with subtyping (which we'll discuss in the next lecture) and a minimal Bot type, we can give error a unique type:

$$\Gamma \vdash \text{error} : Bot$$
 (T-ERROR)

(Of course, what we've really done is just pushed the complexity of the old error rule onto the Bot type! We'll return to this point later.)

For now...

Let's stick with the original rule

$$\Gamma \vdash \text{error} : T$$
 (T-Error)

and live with the resulting nondeterminism of the typing relation.

Type safety

The *preservation* theorem requires no changes when we add error: if a term of type T reduces to error, that's fine, since error has every type T.

Type safety

The *preservation* theorem requires no changes when we add error: if a term of type T reduces to error, that's fine, since error has every type T.

Progress, though, requires a litte more care.

Progress

First, note that we do *not* want to extend the set of values to include **error**, since this would make our new rule for propagating errors through applications.

$$v_1 = rror \longrightarrow error$$
 (E-AppErr2)

overlap with our existing computation rule for applications:

$$(\lambda x: T_{11}.t_{12}) \quad v_2 \longrightarrow [x \mapsto v_2]t_{12} \quad (E-APPABS)$$

e.g., the term

$$(\lambda x: Nat.0)$$
 error

could evaluate to either 0 (which would be wrong) or error (which is what we intend).

Progress

Instead, we keep error as a non-value normal form, and refine the statement of progress to explicitly mention the possibility that terms may evaluate to error instead of to a value.

Theorem [Progress]: Suppose t is a closed, well-typed normal form. Then either t is a value or t = error.

Catching exceptions

Typing

$$\frac{\Gamma \vdash t_1 : T \qquad \Gamma \vdash t_2 : T}{\Gamma \vdash try \ t_1 \ with \ t_2 : T}$$
 (T-Try)

Exceptions carrying values

```
t ::= ... terms raise t raise exception
```

Evaluation

Typing

To typecheck raise expressions, we need to choose a type — let's call it T_{exn} — for the values that are carried along with exceptions.

$$\frac{\Gamma \vdash t_1 : T_{exn}}{\Gamma \vdash raise \ t_1 : T}$$
 (T-Exn)

$$\frac{\Gamma \vdash t_1 : T \qquad \Gamma \vdash t_2 : T_{exn} \rightarrow T}{\Gamma \vdash try \ t_1 \ \text{with} \ t_2 : T}$$
 (T-Try)

To complete the story, we need to decide what type to use as T_{exn} . There are several possibilities.

1. Numeric error codes: $T_{exn} = Nat$ (as in C)

To complete the story, we need to decide what type to use as T_{exn} . There are several possibilities.

- 1. Numeric error codes: $T_{e\times n} = Nat$ (as in C)
- 2. Error messages: $T_{exn} = String$

To complete the story, we need to decide what type to use as T_{exn} . There are several possibilities.

- 1. Numeric error codes: $T_{exn} = Nat$ (as in C)
- 2. Error messages: $T_{exn} = String$
- 3. A predefined variant type:

To complete the story, we need to decide what type to use as T_{exn} . There are several possibilities.

- 1. Numeric error codes: $T_{exn} = Nat$ (as in C)
- 2. Error messages: $T_{e \times n} = String$
- 3. A predefined variant type:

4. An extensible variant type (as in OCaml)

To complete the story, we need to decide what type to use as T_{exn} . There are several possibilities.

- 1. Numeric error codes: $T_{exn} = Nat$ (as in C)
- 2. Error messages: $T_{e \times n} = String$
- 3. A predefined variant type:

```
T_{exn} = \langle divideByZero: Unit, \\ overflow: Unit, \\ fileNotFound: String, \\ fileNotReadable: String, \\ ... \rangle
```

- 4. An extensible variant type (as in OCaml)
- 5. A class of "throwable objects" (as in Java)