CIS 500 Software Foundations Fall 2006

Notes from Yesterday's Email Discussion

November 1

Some lessons

- This is generally a crunch-time in the semester
- Slow down a little and give people a chance to catch up
- Once you're confused, it's hard to know what to ask
- So not necessarily a problem if people are not asking many questions, but definitely a sign to slow down more
- Working simple examples in class is good
- ... in part because it makes people think of other questions
- Some hard homework problems have been too vague
- Not enough information \longrightarrow need to look at the solution to see what is wanted \longrightarrow hard to think independently any more
- Big picture has been getting a little lost in the details

Big Picture

Plan for the rest of the semester

- This week: Basic subtyping
- Next week: Review and midterm
- Nov 13,15: Algorithmics of subtyping
- Nov 20,22: Modeling OO languages in typed lambda-calculus
- Nov 27,29: Featherweight Java
- Dec 4,6: To be decided (Parametric polymorphism? ML module system? ...)
- Dec 20: Final exam

What's it all for

- Techniques and notations for formalizing languages and language constructs
- inductive definitions, operational semantics, typing and subtyping relations, etc.
- Records, exceptions, etc. as case studies
- Strong intuitions about fundamental safety properties
- Especially: Healthy scepticism and good investigative skills for how things can be broken!
- Some specific fundamental building blocks of languages
- Variables, scope, and binding
- Functions and their types (higher-order programming)
- References (mutable state, aliasing)
- Subtyping
- Objects and classes

Ultimately, the goal is to give you the ability to put all this together and formalize your own languages or language features.

Subtyping (again)

Subsumption

We achieve the effect we want by:

1. defining a new subtyping relation between types, written $\mathrm{S}<\mathrm{i} \mathrm{T}$
2. adding a new rule of subsumption to the typing relation:

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}: \mathrm{S} \quad \mathrm{~S}<: \mathrm{T}}{\Gamma \vdash \mathrm{t}: \mathrm{T}} \tag{T-Sub}
\end{equation*}
$$

Example

Motivation

We want terms like

$$
(\lambda r:\{x: N a t\} . r . x)\{x=0, y=1\}
$$

to be well typed.
Similarly, in object-oriented languages, we want to be able to define hierarchies of classes, with classes lower in the hierarchy having richer interfaces than their ancestors higher in the hierarchy, and use instances of richer classes in situations where one of their ancestors are expected.

Subtype relation

S < : S	(S-REFL)
$S<: U \quad U<: T$	(S-Trans)
S <: T	
$\left\{1_{i}: \mathrm{T}_{i}{ }^{i \in 1 . . n+k}\right\}<:\left\{1_{i}: \mathrm{T}_{i}{ }^{i \in 1 . . n}\right\}$	(S-RCDWIDTH)
for each $i \quad S_{i}<\mathrm{T}_{i}$	(S-RcDDepth)
$\overline{\left\{1_{i}: S_{i}{ }^{i \in 1 . . n}\right\}<:\left\{1_{i}: \mathrm{T}_{i}{ }^{i \in 1 . . n}\right\}}$	
$\underline{\left\{\mathrm{k}_{j}: \mathrm{S}_{j}{ }^{j \in 1 \ldots n}\right\} \text { is a permutation of }\left\{\mathrm{I}_{i}: \mathrm{T}_{i}{ }^{i \in 1 . . n}\right\}}$	(S-RcDPERM)
$\left\{\mathrm{k}_{j}: \mathrm{S}_{j}{ }^{j \in 1 . . n}\right\}<:\left\{1_{i}: \mathrm{T}_{i}{ }^{\text {if1..n }}\right\}$	
$\mathrm{T}_{1}<: \mathrm{S}_{1} \quad \mathrm{~S}_{2}<\mathrm{T}_{2}$	(S-Arrow)
$\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}<\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$	
S <: Top	(S-Top)

Another example

$$
\{x: N a t, y: N a t\}<:\{y: N a t\}
$$

Aside: Structural vs. declared subtyping

The subtype relation we have defined is structural: We decide whether S is a subtype of T by examining the structure of S and T.
By contrast, the subtype relation in most OO languages (e.g., Java) is explicitly declared: S is a subtype of T only if the programmer has stated that it should be.

Properties of Subtyping

There are pragmatic arguments for both.
For the moment, we'll concentrate on structural subtyping, which is the more fundamental of the two. (It is sound to declare S to be a subtype of T only when S is structurally a subtype of T.)

We'll come back to declared subtyping when we talk about Featherweight Java.

Safety

Statements of progress and preservation theorems are unchanged from λ_{\rightarrow}.

Proofs become a bit more involved, because the typing relation is no longer syntax directed.

Given a derivation, we don't always know what rule was used in the last step. The rule T-SUB could appear anywhere.

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}: \mathrm{S} \quad \mathrm{~S}<: \mathrm{T}}{\Gamma \vdash \mathrm{t}: \mathrm{T}} \tag{T-Sub}
\end{equation*}
$$

An Inversion Lemma for Subtyping

Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$.

Proof: By induction on subtyping derivations.
Case S-Arrow: $U=U_{1} \rightarrow U_{2} \quad T_{1}<: U_{1} \quad U_{2}<: T_{2}$

An Inversion Lemma for Subtyping

Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$.

Proof: By induction on subtyping derivations.

An Inversion Lemma for Subtyping

Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$.

Proof: By induction on subtyping derivations.
Case S-Arrow: $\quad U=U_{1} \rightarrow U_{2} \quad T_{1}<: U_{1} \quad U_{2}<: T_{2}$ Immediate.

An Inversion Lemma for Subtyping

Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$.
Proof: By induction on subtyping derivations.
Case S-Arrow: $\quad \mathrm{U}=\mathrm{U}_{1} \rightarrow \mathrm{U}_{2} \quad \mathrm{~T}_{1}<: \mathrm{U}_{1} \quad \mathrm{U}_{2}<: \mathrm{T}_{2}$
Immediate.
Case S-Refl: $\quad \mathrm{U}=\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$

An Inversion Lemma for Subtyping

Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$.
Proof: By induction on subtyping derivations.
Case S-Arrow: $\mathrm{U}=\mathrm{U}_{1} \rightarrow \mathrm{U}_{2} \quad \mathrm{~T}_{1}<: \mathrm{U}_{1} \quad \mathrm{U}_{2}<: \mathrm{T}_{2}$ Immediate.
Case S-Refl: $\quad \mathrm{U}=\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
By S-Refl (twice), $T_{1}<: T_{1}$ and $T_{2}<: T_{2}$, as required.

An Inversion Lemma for Subtyping

Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$.
Proof: By induction on subtyping derivations.
Case S-ARrow: $\quad U=U_{1} \rightarrow U_{2} \quad T_{1}<: U_{1} \quad U_{2}<: T_{2}$
Immediate.
Case S-Refl: $\quad \mathrm{U}=\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
By S-REFL (twice), $T_{1}<: T_{1}$ and $T_{2}<: T_{2}$, as required.
Case S-Trans: $\quad \mathrm{U}<: \mathrm{W} \quad \mathrm{W}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$

An Inversion Lemma for Subtyping

Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$.
Proof: By induction on subtyping derivations.
Case S-ARrow: $\quad \mathrm{U}=\mathrm{U}_{1} \rightarrow \mathrm{U}_{2} \quad \mathrm{~T}_{1}<: \mathrm{U}_{1} \quad \mathrm{U}_{2}<: \mathrm{T}_{2}$
Immediate.
Case S-Refl: $\quad \mathrm{U}=\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
By S-REFL (twice), $\mathrm{T}_{1}<: \mathrm{T}_{1}$ and $\mathrm{T}_{2}<: \mathrm{T}_{2}$, as required.
Case S-Trans: $\quad \mathrm{U}<: \mathrm{W} \quad \mathrm{W}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
Applying the IH to the second subderivation,

An Inversion Lemma for Subtyping

Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $U_{2}<: T_{2}$.

Proof: By induction on subtyping derivations.
Case S-Arrow: $U=U_{1} \rightarrow U_{2} \quad T_{1}<: U_{1} \quad U_{2}<: T_{2}$
Immediate.
Case S-Refl: $\quad \mathrm{U}=\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
By S-Refl (twice), $T_{1}<: T_{1}$ and $T_{2}<: T_{2}$, as required.
Case S-Trans: $\quad \mathrm{U}<: \mathrm{W} \quad \mathrm{W}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
Applying the IH to the second subderivation, we find that W has the form $W_{1} \rightarrow W_{2}$, with $T_{1}<: W_{1}$ and $W_{2}<: T_{2}$.

An Inversion Lemma for Subtyping
Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $U_{2}<: T_{2}$.

Proof: By induction on subtyping derivations.
Case S-Arrow: $\quad U=U_{1} \rightarrow U_{2} \quad T_{1}<: U_{1} \quad U_{2}<: T_{2}$
Immediate.
Case S-Refl: $\quad \mathrm{U}=\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
By S-REFL (twice), $T_{1}<: T_{1}$ and $T_{2}<: T_{2}$, as required.
Case S-Trans: $\quad \mathrm{U}<: \mathrm{W} \quad \mathrm{W}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
Applying the IH to the second subderivation, we find that W has the form $W_{1} \rightarrow W_{2}$, with $T_{1}<: W_{1}$ and $W_{2}<: T_{2}$. Now the IH applies again (to the first subderivation), telling us that U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{W}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<: W_{2}$.

An Inversion Lemma for Subtyping

Lemma: If $\mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then U has the form $\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$.
Proof: By induction on subtyping derivations.
Case S-Arrow: $\quad \mathrm{U}=\mathrm{U}_{1} \rightarrow \mathrm{U}_{2} \quad \mathrm{~T}_{1}<: \mathrm{U}_{1} \quad \mathrm{U}_{2}<: \mathrm{T}_{2}$
Immediate.
Case S-Refl: $\quad \mathrm{U}=\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
By S-ReFL (twice), $T_{1}<: T_{1}$ and $T_{2}<: T_{2}$, as required.
Case S-Trans: $\quad \mathrm{U}<: \mathrm{W} \quad \mathrm{W}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
Applying the IH to the second subderivation, we find that W has the form $W_{1} \rightarrow W_{2}$, with $T_{1}<: W_{1}$ and $W_{2}<: T_{2}$. Now the IH applies again (to the first subderivation), telling us that U has the form $U_{1} \rightarrow U_{2}$, with $W_{1}<: U_{1}$ and $U_{2}<: W_{2}$. By S-Trans, $T_{1}<: U_{1}$, and, by S-Trans again, $U_{2}<: T_{2}$, as required.

An Inversion Lemma for Typing

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} \cdot \mathrm{~S}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$.
Proof: By induction on typing derivations.

An Inversion Lemma for Typing

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} \cdot \mathrm{~S}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$.
Proof: By induction on typing derivations.
Case T-ABS: $\quad \mathrm{T}_{1}=\mathrm{S}_{1} \quad \mathrm{~T}_{2}=\mathrm{S}_{2} \quad \Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~S}_{2}: \mathrm{S}_{2}$

An Inversion Lemma for Typing

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} \cdot \mathrm{~S}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$.
Proof: By induction on typing derivations.
Case T-ABS: $\quad \mathrm{T}_{1}=\mathrm{S}_{1} \quad \mathrm{~T}_{2}=\mathrm{S}_{2} \quad \Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~S}_{2}: \mathrm{S}_{2}$ Immediate.
Case T-SUB: $\quad \Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{S}_{2}: \mathrm{U} \quad \mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
By the subtyping inversion lemma, $\mathrm{U}=\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<\mathrm{T}_{2}$.

An Inversion Lemma for Typing

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} \cdot \mathrm{~S}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$.
Proof: By induction on typing derivations.
Case T-ABS: $\quad \mathrm{T}_{1}=\mathrm{S}_{1} \quad \mathrm{~T}_{2}=\mathrm{S}_{2} \quad \Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~S}_{2}: \mathrm{S}_{2}$
Immediate.
Case T-SUB: $\quad \Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{S}_{2}: \mathrm{U} \quad \mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$

An Inversion Lemma for Typing
Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} \cdot \mathrm{~S}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$.
Proof: By induction on typing derivations.
Case T-ABS: $\quad \mathrm{T}_{1}=\mathrm{S}_{1} \quad \mathrm{~T}_{2}=\mathrm{S}_{2} \quad \Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~S}_{2}: \mathrm{S}_{2}$ Immediate.
Case T-SUB: $\quad \Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{S}_{2}: \mathrm{U} \quad \mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
By the subtyping inversion lemma, $\mathrm{U}=\mathrm{U}_{1} \rightarrow \mathrm{U}_{2}$, with $\mathrm{T}_{1}<: \mathrm{U}_{1}$ and $\mathrm{U}_{2}<\mathrm{T}_{2}$.
The IH now applies, yielding $U_{1}<: S_{1}$ and $\Gamma, x: S_{1} \vdash \mathrm{~S}_{2}: U_{2}$.

An Inversion Lemma for Typing

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} \cdot \mathrm{~S}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~S}_{2}: \mathrm{T}_{2}$.
Proof: By induction on typing derivations.
Case T-ABS: $\quad \mathrm{T}_{1}=\mathrm{S}_{1} \quad \mathrm{~T}_{2}=\mathrm{S}_{2} \quad \Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{S}_{2}$
Immediate.
Case T-SuB: $\quad \Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{s}_{2}: \mathrm{U} \quad \mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
By the subtyping inversion lemma, $U=U_{1} \rightarrow U_{2}$, with $T_{1}<: U_{1}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$.
The IH now applies, yielding $U_{1}<: S_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~S}_{2}: \mathrm{U}_{2}$.
From $U_{1}<: S_{1}$ and $T_{1}<: U_{1}$, rule S-Trans gives $T_{1}<: S_{1}$.

Preservation

Theorem: If $\Gamma \vdash \mathrm{t}: \mathrm{T}$ and $\mathrm{t} \longrightarrow \mathrm{t}^{\prime}$, then $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}$.
Proof: By induction on typing derivations.

An Inversion Lemma for Typing

Lemma: If $\Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1}, \mathrm{~S}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$, then $\mathrm{T}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$.
Proof: By induction on typing derivations.
Case T-ABS: $\quad \mathrm{T}_{1}=\mathrm{S}_{1} \quad \mathrm{~T}_{2}=\mathrm{S}_{2} \quad \Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{S}_{2}$
Immediate.
Case T-SuB: $\quad \Gamma \vdash \lambda \mathrm{x}: \mathrm{S}_{1} . \mathrm{S}_{2}: \mathrm{U} \quad \mathrm{U}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
By the subtyping inversion lemma, $U=U_{1} \rightarrow U_{2}$, with $T_{1}<: U_{1}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$.
The IH now applies, yielding $\mathrm{U}_{1}<: \mathrm{S}_{1}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~S}_{2}: \mathrm{U}_{2}$.
From $U_{1}<: S_{1}$ and $T_{1}<: U_{1}$, rule S-Trans gives $T_{1}<: S_{1}$.
From $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{U}_{2}$ and $\mathrm{U}_{2}<: \mathrm{T}_{2}$, rule T-SUB gives
$\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2}: \mathrm{T}_{2}$, and we are done.

Preservation - subsumption case

Case T-SuB: $\mathrm{t}: \mathrm{S} \quad \mathrm{S}<: \mathrm{T}$

Preservation - subsumption case

Case T-Sub: $\mathrm{t}: \mathrm{S} \quad \mathrm{S}<: \mathrm{T}$
By the induction hypothesis, $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{S} . \mathrm{By} \mathrm{T}-\mathrm{SuB}, \Gamma \vdash \mathrm{t}: \mathrm{T}$.

Preservation - application case

Case T-App:

$$
\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}
$$

By the inversion lemma for evaluation, there are three rules by which $t \longrightarrow t^{\prime}$ can be derived: E-App1, E-App2, and E-AppAbs. Proceed by cases.

Preservation - application case

Case T-App:

$$
\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}
$$

By the inversion lemma for evaluation, there are three rules by which $t \longrightarrow t^{\prime}$ can be derived: E-App1, E-App2, and E-AppAbs. Proceed by cases.
Subcase E-App1: $\quad t_{1} \longrightarrow t_{1}^{\prime} \quad t^{\prime}=t_{1}^{\prime} \quad t_{2}$
The result follows from the induction hypothesis and T-APP.

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}} \tag{T-APP}
\end{equation*}
$$

Case T-App (Continued):

$$
\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}
$$

Subcase E-App2: $\quad t_{1}=v_{1} \quad t_{2} \longrightarrow t_{2}^{\prime} \quad t^{\prime}=v_{1} \quad t_{2}^{\prime}$
Similar.

Preservation - application case

Case T-App:

$$
\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}
$$

By the inversion lemma for evaluation, there are three rules by which $t \longrightarrow t^{\prime}$ can be derived: E-App1, E-App2, and
E-AppAbs. Proceed by cases.
Subcase E-App1: $\quad t_{1} \longrightarrow t_{1}^{\prime} \quad t^{\prime}=t_{1}^{\prime} t_{2}$
The result follows from the induction hypothesis and T-APP.

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}} \tag{T-APP}
\end{equation*}
$$

Case T-App (continued):

$$
\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}
$$

Subcase E-AppAbS:

$$
\mathrm{t}_{1}=\lambda \mathrm{x}: \mathrm{S}_{11} \cdot \mathrm{t}_{12} \quad \mathrm{t}_{2}=\mathrm{v}_{2} \quad \mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

By the earlier inversion lemma for the typing relation...

Case T-App (continued):

$$
\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}
$$

Subcase E-AppAbs:

$$
\mathrm{t}_{1}=\lambda \mathrm{x}: \mathrm{S}_{11} \cdot \mathrm{t}_{12} \quad \mathrm{t}_{2}=\mathrm{v}_{2} \quad \mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

By the earlier inversion lemma for the typing relation... $\mathrm{T}_{11}<: \mathrm{S}_{11}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{11} \vdash \mathrm{t}_{12}: \mathrm{T}_{12}$.
By T-Sub, $\Gamma \vdash \mathrm{t}_{2}: \mathrm{S}_{11}$.

Case T-App (Continued):

$$
\mathrm{t}=\mathrm{t}_{1} \mathrm{t}_{2} \quad \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11} \quad \mathrm{~T}=\mathrm{T}_{12}
$$

Subcase E-AppABS: $\mathrm{t}_{1}=\lambda \mathrm{x}: \mathrm{S}_{11} . \mathrm{t}_{12}$

$$
\mathrm{t}_{2}=\mathrm{v}_{2} \quad \mathrm{t}^{\prime}=\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
$$

By the earlier inversion lemma for the typing relation... $\mathrm{T}_{11}<: \mathrm{S}_{11}$ and $\Gamma, \mathrm{x}: \mathrm{S}_{11} \vdash \mathrm{t}_{12}: \mathrm{T}_{12}$.
By T-SuB, $\Gamma \vdash \mathrm{t}_{2}: \mathrm{S}_{11}$.
By the substitution lemma, $\Gamma \vdash \mathrm{t}^{\prime}: \mathrm{T}_{12}$, and we are done.

$$
\begin{aligned}
& \frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}} \quad(\mathrm{~T}-\mathrm{APP}) \\
& \left(\lambda \mathrm{x}: \mathrm{T}_{11} \cdot \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12} \quad(\mathrm{E}-\mathrm{APPABS})
\end{aligned}
$$

Subtyping with Other Features

Ascription and Casting

Ordinary ascription:

$$
\begin{array}{ll}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}}{\Gamma \vdash \mathrm{t}_{1} \text { as } \mathrm{T}: \mathrm{T}} & \text { (T-AsCRIBE) } \\
\mathrm{v}_{1} \text { as } \mathrm{T} \longrightarrow \mathrm{v}_{1} & \text { (E-AsCRIBE) }
\end{array}
$$

Ascription and Casting

Ordinary ascription:

$$
\begin{gather*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}}{\Gamma \vdash \mathrm{t}_{1} \text { as } \mathrm{T}: \mathrm{T}} \\
\mathrm{v}_{1} \text { as } \mathrm{T} \longrightarrow \mathrm{v}_{1} \tag{E-Ascribe}
\end{gather*}
$$

Casting (cf. Java):

$$
\begin{gather*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{S}}{\Gamma \vdash \mathrm{t}_{1} \text { as } \mathrm{T}: \mathrm{T}} \tag{T-CAST}\\
\frac{\vdash \mathrm{v}_{1}: \mathrm{T}}{\mathrm{v}_{1} \text { as } \mathrm{T} \longrightarrow \mathrm{v}_{1}} \tag{E-CAST}
\end{gather*}
$$

Subtyping and Lists

$$
\begin{equation*}
\frac{\mathrm{S}_{1}<: \mathrm{T}_{1}}{\text { List } \mathrm{S}_{1}<: \text { List } \mathrm{T}_{1}} \tag{S-List}
\end{equation*}
$$

I.e., List is a covariant type constructor.

Subtyping and References

$$
\begin{equation*}
\frac{\mathrm{S}_{1}<: \mathrm{T}_{1} \quad \mathrm{~T}_{1}<: \mathrm{S}_{1}}{\text { Ref } \mathrm{S}_{1}<: \operatorname{Ref} \mathrm{T}_{1}} \tag{S-Ref}
\end{equation*}
$$

I.e., Ref is not a covariant (nor a contravariant) type constructor. Why?

Subtyping and References

$$
\begin{equation*}
\frac{\mathrm{S}_{1}<: \mathrm{T}_{1} \quad \mathrm{~T}_{1}<: \mathrm{S}_{1}}{\text { Ref } \mathrm{S}_{1}<: \operatorname{Ref} \mathrm{T}_{1}} \tag{S-REF}
\end{equation*}
$$

l.e., Ref is not a covariant (nor a contravariant) type constructor. Why?

- When a reference is read, the context expects a T_{1}, so if $S_{1}<$: T_{1} then an S_{1} is ok.

Subtyping and References

$$
\begin{equation*}
\frac{\mathrm{S}_{1}<: \mathrm{T}_{1} \quad \mathrm{~T}_{1}<: \mathrm{S}_{1}}{\operatorname{Ref} \mathrm{~S}_{1}<: \operatorname{Ref} \mathrm{T}_{1}} \tag{S-Ref}
\end{equation*}
$$

I.e., Ref is not a covariant (nor a contravariant) type constructor. Why?

- When a reference is read, the context expects a T_{1}, so if $S_{1}<$: T_{1} then an S_{1} is ok.
- When a reference is written, the context provides a T_{1} and if the actual type of the reference is Ref S_{1}, someone else may use the T_{1} as an S_{1}. So we need $T_{1}<S_{1}$.

Subtyping and Arrays

Similarly...

$$
\frac{\mathrm{S}_{1}<: \mathrm{T}_{1} \quad \mathrm{~T}_{1}<: \mathrm{S}_{1}}{\text { Array } \mathrm{S}_{1}<: \text { Array } \mathrm{T}_{1}}
$$

Subtyping and Arrays

Similarly...

$$
\begin{equation*}
\frac{\mathrm{S}_{1}<: \mathrm{T}_{1} \quad \mathrm{~T}_{1}<: \mathrm{S}_{1}}{\text { Array } \mathrm{S}_{1}<: \text { Array } \mathrm{T}_{1}} \tag{S-ARray}
\end{equation*}
$$

Compare this with the Java rule for array subtyping:

$$
\begin{equation*}
\frac{\mathrm{S}_{1}<: \mathrm{T}_{1}}{\text { Array } \mathrm{S}_{1}<: \text { Array } \mathrm{T}_{1}} \tag{S-ArrayJava}
\end{equation*}
$$

This is regarded (even by the Java designers) as a mistake in the design.

References again

Observation: a value of type Ref T can be used in two different ways: as a source for values of type T and as a sink for values of type T.

References again

Observation: a value of type Ref T can be used in two different ways: as a source for values of type T and as a sink for values of type T.
Idea: Split Ref T into three parts:

- Source T: reference cell with "read cabability"
- Sink T: reference cell with "write cabability"
- Ref T: cell with both capabilities

Modified Typing Rules

$$
\begin{gathered}
\frac{\Gamma \mid \Sigma \vdash \mathrm{t}_{1}: \text { Source } \mathrm{T}_{11}}{\Gamma \mid \Sigma \vdash!\mathrm{t}_{1}: \mathrm{T}_{11}} \quad \text { (T-DEREF) } \\
\frac{\Gamma \mid \Sigma \vdash \mathrm{t}_{1}: \text { Sink } \mathrm{T}_{11} \quad \Gamma \mid \Sigma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \mid \Sigma \vdash \mathrm{t}_{1}:=\mathrm{t}_{2}: \text { Unit }} \text { (T-ASSIGN) }
\end{gathered}
$$

Subtyping rules

$$
\begin{equation*}
\frac{\mathrm{S}_{1}<: \mathrm{T}_{1}}{\text { Source } \mathrm{S}_{1}<: \text { Source } \mathrm{T}_{1}} \tag{S-Source}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{T}_{1}<: \mathrm{S}_{1}}{\text { Sink } \mathrm{S}_{1}<: \operatorname{Sink} \mathrm{T}_{1}} \tag{S-Sink}
\end{equation*}
$$

$$
\text { Ref } \mathrm{T}_{1}<: \text { Source } \mathrm{T}_{1}
$$

(S-RefSource)

$$
\text { Ref } \mathrm{T}_{1}<: \text { Sink } \mathrm{T}_{1}
$$

(S-RefSink)

Algorithmic Subtyping

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule can be "read from bottom to top" in a straightforward way.

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}} \tag{T-APp}
\end{equation*}
$$

If we are given some Γ and some t of the form $t_{1} t_{2}$, we can try to find a type for t by

1. finding (recursively) a type for t_{1}
2. checking that it has the form $\mathrm{T}_{11} \rightarrow \mathrm{~T}_{12}$
3. finding (recursively) a type for t_{2}
4. checking that it is the same as T_{11}

Technically, the reason this works is that we can divide the "positions" of the typing relation into input positions (Γ and t) and output positions (T).

- For the input positions, all metavariables appearing in the premises also appear in the conclusion (so we can calculate inputs to the "subgoals" from the subexpressions of inputs to the main goal)
- For the output positions, all metavariables appearing in the conclusions also appear in the premises (so we can calculate outputs from the main goal from the outputs of the subgoals)

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}} \tag{T-App}
\end{equation*}
$$

Syntax-directed sets of rules

The second important point about the simply typed lambda-calculus is that the set of typing rules is syntax-directed, in the sense that, for every "input" 「 and t , there one rule that can be used to derive typing statements involving t.
E.g., if t is an application, then we must proceed by trying to use T-App. If we succeed, then we have found a type (indeed, the unique type) for t. If it fails, then we know that t is not typable.
\longrightarrow no backtracking!

Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be used to give a type to terms of a given shape (the old one plus T-Sub)

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}: \mathrm{S} \quad \mathrm{~S}<: \mathrm{T}}{\Gamma \vdash \mathrm{t}: \mathrm{T}} \tag{T-SuB}
\end{equation*}
$$

2. Worse yet, the new rule T-SuB itself is not syntax directed: the inputs to the left-hand subgoal are exactly the same as the inputs to the main goal!
(Hence, if we translated the typing rules naively into a typechecking function, the case corresponding to T-SUB would cause divergence.)

Non-syntax-directedness of subtyping

What to do?

