CIS 500 Software Foundations Fall 2006

Some Hints

November 6

Hints

- The exam will potentially cover everything in the course so far, but will focus on material we've seen since the first midterm.
- There will be a question that is also a one-star exercise from the book.
- There will be a question similar to problem 6 from midterm 1 ("Which properties remain true if we change one fo the type systems we've studied in the following way...?")
- There will be (at least) one question based on one of the proofs in chapter 15.
- For PhD students, there will be a question involving subtyping and references.

Review

What are the types of these expressions?

- $\lambda \mathrm{x}:$ Bool \rightarrow Bool. $\mathrm{x}(\mathrm{x}(\mathrm{x}($ true)))

What are the types of these expressions?

- $\lambda \mathrm{x}:$ Bool \rightarrow Bool. $\mathrm{x}(\mathrm{x}(\mathrm{x}($ true)))
- ($\lambda \mathrm{x}:$ Bool. $\lambda \mathrm{y}:$ Bool \rightarrow Bool. true) false ($\lambda \mathrm{z}:$ Bool \rightarrow Bool. true)

What are the types of these expressions?

- $\lambda \mathrm{x}:$ Bool \rightarrow Bool. $\mathrm{x}(\mathrm{x}(\mathrm{x}($ true $)))$
- ($\lambda \mathrm{x}:$ Bool. $\lambda \mathrm{y}:$ Bool \rightarrow Bool. true) false ($\lambda z:$ Bool \rightarrow Bool. true)
- ($\lambda \mathrm{x}:$ Bool. $\lambda \mathrm{y}:$ Bool. error) false false false false false

What are the types of these expressions?

- $\lambda \mathrm{x}:$ Bool \rightarrow Bool. $\mathrm{x}(\mathrm{x}(\mathrm{x}($ true $)))$
- ($\lambda \mathrm{x}:$ Bool. $\lambda \mathrm{y}:$ Bool \rightarrow Bool. true) false ($\lambda z:$ Bool \rightarrow Bool. true)
- ($\lambda \mathrm{x}:$ Bool. $\lambda \mathrm{y}:$ Bool. error) false false false false false
- ($\lambda \mathrm{x}:$ Bool. $\lambda \mathrm{y}:$ Bool. true) false false false false false

What are the types of these expressions?

- $\lambda \mathrm{x}:$ Bool \rightarrow Bool. $\mathrm{x}(\mathrm{x}(\mathrm{x}($ true)))
- ($\lambda \mathrm{x}:$ Bool. $\lambda \mathrm{y}:$ Bool \rightarrow Bool. true) false ($\lambda \mathrm{z}:$ Bool \rightarrow Bool. true)
- ($\lambda \mathrm{x}:$ Bool. $\lambda \mathrm{y}:$ Bool. error) false false false false false
- ($\lambda \mathrm{x}:$ Bool. $\lambda \mathrm{y}:$ Bool. true) false false false false false
- try
(if ($\lambda \mathrm{x}:$ Bool. x) error
then (error false)
else error)
with
$\lambda y: B o o l \rightarrow$ Bool. y

For reference: Typing rules for exceptions

$$
\begin{gathered}
\Gamma \vdash \text { error }: \mathrm{T} \\
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}}{\Gamma \vdash \text { try } \mathrm{t}_{1} \text { with } \mathrm{t}_{2}: \mathrm{T}}
\end{gathered}
$$

(T-Error)
(T-TRY)

Give the result of evaluation and the final store after each of these expressions is evaluated to a normal form starting in the empty store.

- let $x=r e f 0$ in let $y=r e f 1$ in $y:=3$
! x
- let $x=r e f 0$ in
let $y=r e f 1$ in let $\mathrm{x}=\mathrm{y}$ in ! x

Give the result of evaluation and the final store after each of these expressions is evaluated to a normal form starting in the empty store.

- let $\mathrm{x}=$ ref 0 in let $y=r e f 1$ in $y:=3$
! x
- let $\mathrm{x}=$ ref 0 in let $y=r e f 1$ in let $x=y$ in ! x
- let $\mathrm{x}=\mathrm{ref} 0$ in
let $\mathrm{y}=\mathrm{x}$ in let $\mathrm{x}=\mathrm{y}$ in ! x

For reference: Evaluation rules for references

$$
\begin{gather*}
I \notin \operatorname{dom}(\mu) \\
\mathrm{ref} \mathrm{v}_{1}|\mu \longrightarrow I|\left(\mu, I \mapsto \mathrm{v}_{1}\right) \tag{E-Assign}\\
\frac{\mu(I)=\mathrm{v}}{!/|\mu \longrightarrow \mathrm{v}| \mu}
\end{gather*}
$$

(E-DerefLoc)
$I:=\mathrm{v}_{2} \mid \mu \longrightarrow$ unit $\mid\left[/ \mapsto \mathrm{v}_{2}\right] \mu$
(Plus several congruence rules.)

Which of the following functions could evaluate to 42 when applied to a single argument and evaluated with a store of the appropriate type?

- $\lambda \mathrm{x}:$ Ref Nat. $\mathrm{l} \mathrm{x}+1$

Which of the following functions could evaluate to 42 when applied to a single argument and evaluated with a store of the appropriate type?

- $\lambda \mathrm{x}:$ Ref Nat. $!\mathrm{x}+1$
- $\lambda \mathrm{x}:$ Ref Nat. x

Which of the following functions could evaluate to 42 when applied to a single argument and evaluated with a store of the appropriate type?

- $\lambda \mathrm{x}$:Ref Nat. $!\mathrm{x}+1$
- $\lambda \mathrm{x}:$ Ref Nat. x
- $\lambda \mathrm{x}: \operatorname{Ref}$ Nat. ($\left.\mathrm{x}:=3 ; \mathrm{I}_{1}:=42 ;!\mathrm{I}_{1}\right)$

Which of the following functions could evaluate to 42 when applied to a single argument and evaluated with a store of the appropriate type?

- $\lambda \mathrm{x}:$ Ref Nat. $\mathrm{I} \mathrm{x}+1$
- $\lambda \mathrm{x}:$ Ref Nat. x
- $\lambda \mathrm{x}: \operatorname{Ref}$ Nat. ($\left.\mathrm{x}:=3 ; \mathrm{I}_{1}:=42 ;!1_{1}\right)$
- $\lambda \mathrm{f}:$ Unit \rightarrow Unit. $\left(l_{1}:=3 ; ~ f\right.$ unit; $\left.!l_{1}\right)$

Preservation and progress for chapter 13

- The preservation and progress proofs for λ_{\rightarrow} with references are just sketched in TAPL.
- Working out the details for yourself is an excellent exercise
- A question based on this proof may appear on the final exam, but will not appear on the coming midterm

Subtyping

For each of the following pairs of terms, say whether the one on the left is a subtype of the one on the right, a supertype, equivalent, or incomparable.

- $(\} \rightarrow\}) \rightarrow$ Top and Top \rightarrow Top

Subtyping

For each of the following pairs of terms, say whether the one on the left is a subtype of the one on the right, a supertype, equivalent, or incomparable.

- $(\} \rightarrow\}) \rightarrow$ Top and Top \rightarrow Top
- (Top \rightarrow Top) $\rightarrow\} \rightarrow\}$ and $($ Top $\rightarrow\}) \rightarrow$ Top

Subtyping

For each of the following pairs of terms, say whether the one on the left is a subtype of the one on the right, a supertype, equivalent, or incomparable.

- $(\} \rightarrow\}) \rightarrow$ Top and $\mathrm{Top} \rightarrow$ Top
- (Top \rightarrow Top) $\rightarrow\} \rightarrow\}$ and $($ Top $\rightarrow\}) \rightarrow$ Top
- \{a:Top, b:\{c:Top,d:Top\}\} and \{b:\{d:Top,c:Top\},a:Top\}

Subtyping

For each of the following pairs of terms, say whether the one on the left is a subtype of the one on the right, a supertype, equivalent, or incomparable.

- $(\} \rightarrow\}) \rightarrow$ Top and $\mathrm{Top} \rightarrow$ Top
- $(\mathrm{Top} \rightarrow$ Top) $\rightarrow\} \rightarrow\}$ and $(\mathrm{Top} \rightarrow\}) \rightarrow$ Top
- \{a:Top, b:\{c:Top,d:Top\}\} and \{b:\{d:Top,c:Top\},a:Top\}
- <1:Top,m:\{n:Top\}> and <m:\{n:Top,o:Top\}>

Subtyping

For each of the following pairs of terms, say whether the one on the left is a subtype of the one on the right, a supertype, equivalent, or incomparable.

- $(\} \rightarrow\}) \rightarrow$ Top and $\mathrm{Top} \rightarrow$ Top
- $(\mathrm{Top} \rightarrow$ Top) $\rightarrow\} \rightarrow\}$ and $(\mathrm{Top} \rightarrow\}) \rightarrow$ Top
- \{a:Top, b:\{c:Top,d:Top\}\} and \{b:\{d:Top,c:Top\},a:Top\}
- <l:Top,m:\{n:Top\}> and <m:\{n:Top,o:Top\}>
- $\langle>\rightarrow$ Top and $\} \rightarrow$ Top

Subtyping

Draw a subtyping derivation for the following statement:

$$
(T o p \rightarrow\{x: N a t\}) \rightarrow\{x: \text { Nat }, \mathrm{y}: \text { Nat }\} \quad<: \quad(\{ \} \rightarrow\{ \}) \rightarrow\{y: \text { Nat }\}
$$

For reference: Subtyping rules

$$
\begin{align*}
& \text { S <: S } \tag{S-Refl}\\
& \frac{S<: U \quad U<: T}{S<: T} \tag{S-Trans}\\
& \left\{\mathrm{I}_{i}: \mathrm{T}_{\mathrm{i}}{ }^{i \in 1 . . n+k}\right\}<:\left\{\mathrm{I}_{i}: \mathrm{T}_{i}{ }^{i \in 1 \ldots n}\right\} \tag{S-RcdWidth}\\
& \frac{\text { for each } i \quad S_{i}<: T_{i}}{\left\{I_{i}: S_{i}{ }^{i \in 1 \ldots n\}}<:\left\{I_{i}: T_{i}{ }^{i \in 1 . . n\}}\right.\right.} \\
& \frac{\left\{\mathrm{k}_{j}: \mathrm{S}_{\mathrm{j}}{ }^{j \in 1 \ldots n\}} \text { is a permutation of }\left\{I_{i}: T_{i}{ }^{i \in 1 \ldots n}\right\}\right.}{\left\{\mathrm{k}_{j}: \mathrm{S}_{j}{ }^{j \in 1 \ldots n\}}<:\left\{I_{i}: \mathrm{T}_{i}{ }^{i \in 1 \ldots n\}}\right.\right.} \\
& \frac{\mathrm{T}_{1}<: \mathrm{S}_{1} \quad \mathrm{~S}_{2}<: \mathrm{T}_{2}}{\mathrm{~S}_{1} \rightarrow \mathrm{~S}_{2}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}} \tag{S-Arrow}\\
& \text { S <: Top } \tag{S-Top}
\end{align*}
$$

Ascription as a derived form

- Someone asked to work exercise 11.4.1 part 2 today.
- But the solution is somewhat technical and would take too much time to discuss in detail.
- This exercise is not needed for the exam.

The Hints, again

- The exam will potentially cover everything in the course so far, but will focus on material we've seen since the first midterm.
- There will be a question that is also a one-star exercise from the book.
- There will be a question similar to problem 6 from midterm 1 ("Which properties remain true if we change one fo the type systems we've studied in the following way...?")
- There will be (at least) one question based on one of the proofs in chapter 15.
- For PhD students, there will be a question involving subtyping and references.

