CIS 500 Software Foundations Fall 2006

Metatheory of Subtyping

November 13

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule can be "read from bottom to top" in a straightforward way.

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}} \tag{T-APP}
\end{equation*}
$$

If we are given some Γ and some t of the form $t_{1} t_{2}$, we can try to find a type for t by

1. finding (recursively) a type for t_{1}
2. checking that it has the form $\mathrm{T}_{11} \rightarrow \mathrm{~T}_{12}$
3. finding (recursively) a type for t_{2}
4. checking that it is the same as T_{11}

Technically, the reason this works is that we can divide the "positions" of the typing relation into input positions (Γ and t) and output positions (T).

- For the input positions, all metavariables appearing in the premises also appear in the conclusion (so we can calculate inputs to the "subgoals" from the subexpressions of inputs to the main goal)
- For the output positions, all metavariables appearing in the conclusions also appear in the premises (so we can calculate outputs from the main goal from the outputs of the subgoals)

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}} \tag{T-APP}
\end{equation*}
$$

Syntax-directed sets of rules

The second important point about the simply typed lambda-calculus is that the set of typing rules is syntax-directed, in the sense that, for every "input" 「 and t , there one rule that can be used to derive typing statements involving t.
E.g., if t is an application, then we must proceed by trying to use T-App. If we succeed, then we have found a type (indeed, the unique type) for t. If it fails, then we know that t is not typable.
\longrightarrow no backtracking!

Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be used to give a type to terms of a given shape (the old one plus T-Sub)

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}: \mathrm{S} \quad \mathrm{~S}<: \mathrm{T}}{\Gamma \vdash \mathrm{t}: \mathrm{T}} \tag{T-Sub}
\end{equation*}
$$

2. Worse yet, the new rule T-Sub itself is not syntax directed: the inputs to the left-hand subgoal are exactly the same as the inputs to the main goal!
(If we translated the typing rules naively into a typechecking function, the case corresponding to T-SUB would cause divergence.)

Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.

1. There are lots of ways to derive a given subtyping statement.
2. The transitivity rule

$$
\begin{equation*}
\frac{\mathrm{S}<: \mathrm{U} \quad \mathrm{U}<: \mathrm{T}}{\mathrm{~S}<: \mathrm{T}} \tag{S-Trans}
\end{equation*}
$$

is badly non-syntax-directed: the premises contain a metavariable (in an "input position") that does not appear at all in the conclusion.

To implement this rule naively, we'd have to guess a value for U!
The

What to do?
\qquad -都 \qquad

What to do?

1. Observation: We don't need 1000 ways to prove a given typing or subtyping statement - one is enough.
\longrightarrow Think more carefully about the typing and subtyping systems to see where we can get rid of excess flexibility
2. Use the resulting intuitions to formulate new "algorithmic" (i.e., syntax-directed) typing and subtyping relations
3. Prove that the algorithmic relations are "the same as" the original ones in an appropriate sense.

Subtype relation

$$
\begin{align*}
& S<: S \\
& \frac{S<: U \quad U<: T}{S<: T} \\
& \left\{I_{i}: T_{i}{ }^{i \in 1 \ldots n+k}\right\}<:\left\{I_{i}: T_{i}{ }^{i \in 1 \ldots n}\right\} \\
& \frac{\text { for each } i \quad S_{i}<: T_{i}}{\left\{I_{i}: S_{i}{ }^{i \in 1 . . n\}}<:\left\{I_{i}: T_{i}{ }^{i \in 1 . n}\right\}\right.} \\
& \frac{\left\{\mathrm{k}_{j}: S_{j}{ }^{j \in 1 . . n}\right\} \text { is a permutation of }\left\{I_{i}: T_{i}{ }^{i \in 1 \ldots n\}}\right.}{\left\{\mathrm{k}_{j}: \mathrm{S}_{j}{ }^{j \in 1 . . n}\right\}<:\left\{I_{i}: \mathrm{T}_{i}{ }^{i \in 1 . . n\}}\right.} \text { (S-RCDPERM) } \\
& \frac{\mathrm{T}_{1}<: \mathrm{S}_{1} \quad \mathrm{~S}_{2}<: \mathrm{T}_{2}}{\mathrm{~S}_{1} \rightarrow \mathrm{~S}_{2}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}} \tag{S-Arrow}\\
& \text { S <: Top } \\
& \text { (S-Top) }
\end{align*}
$$

Developing an algorithmic subtyping relation

Issues

For a given subtyping statement, there are multiple rules that could be used last in a derivation.

1. The conclusions of S-RcdWidth, S-RcdDepth, and S-RCDPERM overlap with each other.
2. S-REFL and S-Trans overlap with every other rule.

Step 1: simplify record subtyping
Idea: combine all three record subtyping rules into one "macro rule" that captures all of their effects

$$
\begin{equation*}
\frac{\left\{\mathrm{l}_{i}{ }^{i \in 1 . . n}\right\} \subseteq\left\{\mathrm{k}_{j}^{j \in 1 \ldots m}\right\} \quad \mathrm{k}_{j}=\mathrm{l}_{i} \text { implies } \mathrm{S}_{j}<: \mathrm{T}_{i}}{\left\{\mathrm{k}_{j}: \mathrm{S}_{j}{ }^{j \in 1 \ldots m}\right\}<:\left\{\mathrm{l}_{i}: \mathrm{T}_{i}{ }^{i \in 1 \ldots n\}}\right.} \tag{S-RcD}
\end{equation*}
$$

Step 2: Get rid of reflexivity
Observation: S-REFL is unnecessary.
Lemma: S <: S can be derived for every type S without using S-Refl.

Simpler subtype relation

$$
\begin{gather*}
\mathrm{S}<: \mathrm{S} \tag{S-Refl}\\
\frac{\mathrm{~S}<: \mathrm{U} \quad \mathrm{U}<: \mathrm{T}}{\mathrm{~S}<: \mathrm{T}} \tag{S-Trans}
\end{gather*}
$$

$$
\begin{gather*}
\frac{\left\{\mathrm{l}_{i}{ }^{i \in 1 \ldots n}\right\} \subseteq\left\{\mathrm{k}_{j}{ }^{j \in 1 \ldots m}\right\} \quad \mathrm{k}_{j}=\mathrm{l}_{i} \text { implies } \mathrm{S}_{j}<: \mathrm{T}_{i}}{\left\{\mathrm{k}_{j}: \mathrm{S}_{j}{ }^{j \in 1 \ldots m}\right\}<:\left\{\mathrm{I}_{i}: \mathrm{T}_{i}{ }^{i \in 1 \ldots n\}}\right.} \tag{S-RcD}\\
\frac{\mathrm{T}_{1}<: \mathrm{S}_{1} \quad \mathrm{~S}_{2}<: \mathrm{T}_{2}}{\mathrm{~S}_{1} \rightarrow \mathrm{~S}_{2}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}} \tag{S-Arrow}\\
\mathrm{~S}<: \mathrm{Top} \tag{S-Top}
\end{gather*}
$$

Even simpler subtype relation

$$
\begin{gather*}
\frac{\mathrm{S}<: \mathrm{U} \quad \mathrm{U}<: \mathrm{T}}{\mathrm{~S}<: \mathrm{T}} \\
\frac{\left\{\mathrm{l}_{i}{ }^{i \in 1 . . n}\right\} \subseteq\left\{\mathrm{k}_{j}{ }^{j \in 1 \ldots m}\right\} \quad \mathrm{k}_{j}=\mathrm{l}_{i} \text { implies } \mathrm{S}_{j}<: \mathrm{T}_{i}}{\left\{\mathrm{k}_{j}: \mathrm{S}_{j}{ }^{j \in 1 \ldots m}\right\}<:\left\{\mathrm{I}_{i}: \mathrm{T}_{i}{ }^{i \in 1 \ldots n\}}\right.} \tag{S-RcD}\\
\frac{\mathrm{T}_{1}<: \mathrm{S}_{1} \quad \mathrm{~S}_{2}<: \mathrm{T}_{2}}{\mathrm{~S}_{1} \rightarrow \mathrm{~S}_{2}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}} \\
\mathrm{~S}<: \text { Top } \tag{S-Top}
\end{gather*}
$$

Step 3: Get rid of transitivity
Observation: S-Trans is unnecessary.
Lemma: If $S<: T$ can be derived, then it can be derived without using S-Trans.
"Algorithmic" subtype relation

$$
\begin{gather*}
\mapsto \mathrm{S}<: \mathrm{Top} \tag{SA-Top}\\
\frac{\mathrm{~T}_{1}<: \mathrm{S}_{1} \quad \mid \mathrm{S}_{2}<: \mathrm{T}_{2}}{\mathrm{~S} \rightarrow \mathrm{~S}_{2}<: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}} \tag{SA-Arrow}
\end{gather*}
$$

$$
\frac{\left\{1_{i}{ }^{i \in 1 . . n}\right\} \subseteq\left\{\mathrm{k}_{j}^{j \in 1 \ldots m}\right\} \quad \text { for each } \mathrm{k}_{j}=\mathrm{I}_{i}, \mapsto \mathrm{~S}_{j}<: \mathrm{T}_{i}}{\mapsto\left\{\mathrm{k}_{j}: \mathrm{S}_{j}{ }^{j \in 1 \ldots m}\right\}<:\left\{\mathrm{I}_{i}: \mathrm{T}_{i}{ }^{i \in 1 \ldots n\}}\right.} \text { (SA-RCD) }
$$

Soundness and completeness

Theorem: $\mathrm{S}<: \mathrm{T}$ iff $\mapsto \mathrm{S}<: \mathrm{T}$.
Proof: (Homework)

Terminology:

- The algorithmic presentation of subtyping is sound with respect to the original if $\mapsto: \mathrm{S}<:$ implies $\mathrm{S}<: \mathrm{T}$. (Everything validated by the algorithm is actually true.)
- The algorithmic presentation of subtyping is complete with respect to the original if $S<: T$ implies $\mid S<: T$. (Everything true is validated by the algorithm.)

Subtyping Algorithm (pseudo-code)

The algorithmic rules can be translated directly into code:

```
subtype(S, T) =
    if T = Top, then true
    else if S = S S ->S S and T = T1 }->\mp@subsup{T}{2}{
        then subtype(T, T, S
```



```
        then { {li}\mp@subsup{}{i}{i\in1..n}}\subseteq{\mp@subsup{k}{j}{}\mp@subsup{}{}{j\in1..m}
            ^ for all i\in1..n there is some j\in1..m with k}\mp@subsup{k}{j}{}=\mp@subsup{l}{i}{
                and subtype(Sj, Ti}
    else false.
```


Decision Procedures

Recall: A decision procedure for a relation $R \subseteq U$ is a total function p from U to $\{$ true, false $\}$ such that $p(u)=$ true iff $u \in R$.

Decision Procedures

Recall: A decision procedure for a relation $R \subseteq U$ is a total function p from U to $\{$ true, false $\}$ such that $p(u)=$ true iff $u \in R$. Is our subtype function a decision procedure?

Decision Procedures

Recall: A decision procedure for a relation $R \subseteq U$ is a total function p from U to $\{$ true, false $\}$ such that $p(u)=$ true iff $u \in R$. Is our subtype function a decision procedure?
Since subtype is just an implementation of the algorithmic subtyping rules, we have

1. if subtype $(S, T)=$ true, then $\Vdash S<: T$
(hence, by soundness of the algorithmic rules, $\mathrm{S}<: \mathrm{T}$)
2. if subtype($\mathrm{S}, \mathrm{T})=$ false, then not $\mapsto \mathrm{S}<: \mathrm{T}$
(hence, by completeness of the algorithmic rules, not $S<: T$)

Decision Procedures

Recall: A decision procedure for a relation $R \subseteq U$ is a total function p from U to $\{$ true, false $\}$ such that $p(u)=$ true iff $u \in R$. Is our subtype function a decision procedure?
Since subtype is just an implementation of the algorithmic subtyping rules, we have

1. if subtype $(S, T)=$ true, then $\Vdash S$ <: T
(hence, by soundness of the algorithmic rules, $\mathrm{S}<: \mathrm{T}$)
2. if subtype $(S, T)=$ false, then not $\mapsto S$ <: T
(hence, by completeness of the algorithmic rules, not S <: T)
Q: What's missing?

Decision Procedures

Recall: A decision procedure for a relation $R \subseteq U$ is a total function p from U to $\{$ true, false $\}$ such that $p(u)=$ true iff $u \in R$.
Is our subtype function a decision procedure?
Since subtype is just an implementation of the algorithmic subtyping rules, we have

1. if subtype $(\mathrm{S}, \mathrm{T})=$ true, then $\mapsto \mathrm{S}<: \mathrm{T}$
(hence, by soundness of the algorithmic rules, S <: T)
2. if subtype $(S, T)=$ false, then not $\mapsto S$ <: T
(hence, by completeness of the algorithmic rules, not $S<: T$)
Q: What's missing?
A: How do we know that subtype is a total function?

Decision Procedures

Recall: A decision procedure for a relation $R \subseteq U$ is a total function p from U to $\{$ true, false $\}$ such that $p(u)=$ true iff $u \in R$. Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic subtyping rules, we have

1. if subtype $(\mathrm{S}, \mathrm{T})=$ true, then $\mapsto \mathrm{S}<: \mathrm{T}$
(hence, by soundness of the algorithmic rules, $\mathrm{S}<: \mathrm{T}$)
2. if subtype $(S, T)=$ false, then not $\mapsto S<: T$
(hence, by completeness of the algorithmic rules, not $S<: T$)
Q: What's missing?
A: How do we know that subtype is a total function?
Prove it!

Metatheory of Typing

Issue

For the typing relation, we have just one problematic rule to deal with: subsumption.

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}: \mathrm{S} \quad \mathrm{~S}<: \mathrm{T}}{\Gamma \vdash \mathrm{t}: \mathrm{T}} \tag{T-Sub}
\end{equation*}
$$

Where is this rule really needed?
For applications. E.g., the term

$$
(\lambda r:\{x: N a t\} . r . x)\{x=0, y=1\}
$$

is not typable without using subsumption.

Issue

For the typing relation, we have just one problematic rule to deal with: subsumption.

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}: \mathrm{S} \quad \mathrm{~S}<: \mathrm{T}}{\Gamma \vdash \mathrm{t}: \mathrm{T}} \tag{T-Sub}
\end{equation*}
$$

Where is this rule really needed?
For applications. E.g., the term

$$
(\lambda r:\{x: N a t\} . r . x)\{x=0, y=1\}
$$

is not typable without using subsumption.
Where else??

Issue

For the typing relation, we have just one problematic rule to deal with: subsumption.

$$
\begin{equation*}
\frac{\Gamma \vdash \mathrm{t}: \mathrm{S} \quad \mathrm{~S}<: \mathrm{T}}{\Gamma \vdash \mathrm{t}: \mathrm{T}} \tag{T-Sub}
\end{equation*}
$$

Where is this rule really needed?
For applications. E.g., the term

$$
(\lambda r:\{x: N a t\} . r . x)\{x=0, y=1\}
$$

is not typable without using subsumption.
Where else??
Nowhere else! Uses of subsumption to help typecheck applications are the only interesting ones.

Example (T-ABS)

Example (T-ABS)

becomes

Example (T-App on the left)

becomes

Example (T-App on the left)

$F \vdash \mathrm{x}: \mathrm{S}_{1} \cdot \mathrm{~S}_{2}: \mathrm{S}_{1} \rightarrow \mathrm{~T}_{2}$

Example (T-App on the right)

