CIS 500
Software Foundations

Fall 2006

November 13

Metatheory of Subtyping

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule
can be “read from bottom to top" in a straightforward way.

Ht1: T11—Ti2 [Fty: Tp
[Fty to: Tio

(T-App)

If we are given some ' and some t of the form t; t», we can try
to find a type for t by

1. finding (recursively) a type for t;

2. checking that it has the form T1;—Ti»
3. finding (recursively) a type for t,
4.

checking that it is the same as Ty

Technically, the reason this works is that we can divide the
“positions” of the typing relation into input positions (I" and t)
and output positions (T).

» For the input positions, all metavariables appearing in the
premises also appear in the conclusion (so we can calculate
inputs to the “subgoals” from the subexpressions of inputs to
the main goal)

» For the output positions, all metavariables appearing in the
conclusions also appear in the premises (so we can calculate
outputs from the main goal from the outputs of the subgoals)

[ty : T11—T12 MEty : Ty
Mty to: T2

(T-App)

Syntax-directed sets of rules

The second important point about the simply typed
lambda-calculus is that the set of typing rules is syntax-directed, in
the sense that, for every “input” I and t, there one rule that can
be used to derive typing statements involving t.

E.g., if t is an application, then we must proceed by trying to use
T-APP. If we succeed, then we have found a type (indeed, the
unique type) for t. If it fails, then we know that t is not typable.

— no backtracking!

Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of
syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be
used to give a type to terms of a given shape (the old one
plus T-SUB)

[t :8S S< T
[t :T

(T-Sus)

2. Worse yet, the new rule T-SUB itself is not syntax directed:
the inputs to the left-hand subgoal are exactly the same as
the inputs to the main goal!

(If we translated the typing rules naively into a typechecking
function, the case corresponding to T-SUB would cause
divergence.)

Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.

1. There are lots of ways to derive a given subtyping statement.
2. The transitivity rule

S< U U< T

(S-TrANS)
S<:T

is badly non-syntax-directed: the premises contain a

metavariable (in an “input position”) that does not appear at

all in the conclusion.

To implement this rule naively, we'd have to guess a value for
Ul

What to do?

What to do?

1. Observation: We don’t need 1000 ways to prove a given
typing or subtyping statement — one is enough.

—— Think more carefully about the typing and subtyping
systems to see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic”
(i.e., syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the
original ones in an appropriate sense.

Developing an algorithmic
subtyping relation

Subtype relation

S<'s (S-REFL)

S<U U<t T

(S-TrANS)
S<T

{1;:T; 'St} < {10 T; €Y (S-RCcDWIDTH)
foreach i 8; < T;

{11,:5/, i€1.n} <: {11_ :T; r'(:l..n}

(S-RcpDEPTH)

{k;:S;/S*"} is a permutation of {1;:T; *-"}
{kj:sj jCl..n} <: {li 5Ti r'Cl..n}

(S-RCDPERM)

Ty <t 81 So < To
S1—S, < T1—Th

(S-ARROW)

S <: Top (S-Top)

Issues

For a given subtyping statement, there are multiple rules that
could be used last in a derivation.

1. The conclusions of S-RCcDWIDTH, S-RCDDEPTH, and
S-RCDPERM overlap with each other.

2. S-REFL and S-TRANS overlap with every other rule.

Step 1: simplify record subtyping

Idea: combine all three record subtyping rules into one “macro
rule” that captures all of their effects

{li /'El..n} C {kj jEl..m} ki=1; implies S; < T;

Simpler subtype relation

S<:s (S-REFL)

S<U U< T

. _ S-Rcp -TRANS
{kj:Sj jel.my <& {1;:T; '€t} () S< T (S RAN)
@ g m=limples ST o
{kjisj]'Elwm} <: {li :T; iez,,n}
T1<:S S < T
! ! 2 2 (S-ARROW)
S1—8, <t T1—To
S <: Top (S-Top)
Step 2: Get rid of reflexivity Even simpler subtype relation
Observation: S-REFL is unnecessary.
S<U U< T (S-TrANS)
_— -Tr
Lemma: S <: S can be derived for every type S without using S< T
S-REFL.
Mg m=limples ST
{kjisj je1”m} <: {li :T,' I'El,,n}
Ty < S So <t T
! ! 2 2 (S-ARROW)
S1—8, <t T1—T>s
S <: Top (S-Top)
Step 3: Get rid of transitivity “Algorithmic” subtype relation
Observation: S-TRANS is unnecessary.
b S <: Top (SA-Topr)
Lemma: If S <: T can be derived, then it can be derived without
ing S-TRANS. b T;<:8 b Sy<: T
using Lt N (SA-ARROW)
B S1—8y <t T1—T>s
1; €t} C {k; ST foreach kj =1;, B S; < T;
{ I }—{J }) ! J ,(SA-RCD)

),, {kj:Sj jEl..m} <: {li:Ti i€1..n}

Soundness and completeness Subtyping Algorithm (pseudo-code)

Theorem: S <: Tiff» S<: T. The algorithmic rules can be translated directly into code:

Proof: (Homework) subtype(S,T) =

if T = Top, then true
elseif S=S51—Sand T =T;—T»
Terminology: th.en subtype(T1,81) A subtype(Sz,T2)
else if S ={k;:5;/*""}and T = {1;:T; """}
then {1/ lCl..n} g {kj j(:l..m}
A forall i € 1..n there is some j € 1..m with k; = 1;
and subtype(S;, T;)

» The algorithmic presentation of subtyping is sound with
respect to the original if » S <: T implies S <: T.
(Everything validated by the algorithm is actually true.)

» The algorithmic presentation of subtyping is complete with else false.
respect to the original if S <: T implies » S <: T.
(Everything true is validated by the algorithm.)
Decision Procedures Decision Procedures
Recall: A decision procedure for a relation R C U is a total Recall: A decision procedure for a relation R C U is a total
function p from U to {true, false} such that p(u) = true iff u € R. function p from U to {true, false} such that p(u) = true iff u € R.

Is our subtype function a decision procedure?

Decision Procedures Decision Procedures
Recall: A decision procedure for a relation R C U is a total Recall: A decision procedure for a relation R C U is a total
function p from U to {true, false} such that p(u) = true iff u € R. function p from U to {true, false} such that p(u) = true iff u € R.
Is our subtype function a decision procedure? Is our subtype function a decision procedure?
Since subtype is just an implementation of the algorithmic Since subtype is just an implementation of the algorithmic
subtyping rules, we have subtyping rules, we have
1. if subtype(S,T) = true, then t» S <t T 1. if subtype(S,T) = true, then > S <0 T
(hence, by soundness of the algorithmic rules, S <: T) (hence, by soundness of the algorithmic rules, S <: T)
2. if subtype(S,T) = false, then not » S < T 2. if subtype(S,T) = false, then not b» S <: T
(hence, by completeness of the algorithmic rules, not S <: T) (hence, by completeness of the algorithmic rules, not S <: T)

Q: What's missing?

Decision Procedures

Recall: A decision procedure for a relation R C U is a total
function p from U to {true, false} such that p(u) = true iff u € R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtyping rules, we have
1. if subtype(S,T) = true, then > S <t T
(hence, by soundness of the algorithmic rules, S <: T)

2. if subtype(S,T) = false, then not » S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What's missing?

A: How do we know that subtype is a total function?

Decision Procedures

Recall: A decision procedure for a relation R C U is a total
function p from U to {true, false} such that p(u) = true iff u € R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtyping rules, we have

1. if subtype(S,T) = true, then > S <t T
(hence, by soundness of the algorithmic rules, S <: T)

2. if subtype(S,T) = false, then not » S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What's missing?
A: How do we know that subtype is a total function?

Prove it!

Metatheory of Typing

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

Ft:8 S< T
Et:T

(T-SuB)

Where is this rule really needed?

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

[t :8 S< T

(T-SuB)
M=t :T

Where is this rule really needed?

For applications. E.g., the term
(Ar:{x:Nat}. r.x) {x=0,y=1}

is not typable without using subsumption.

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

Nt :8 S<T

FFt:T (T-Sus)

Where is this rule really needed?

For applications. E.g., the term
(Ar:{x:Nat}. r.x) {x=0,y=1}

is not typable without using subsumption.

Where else??

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

Example (T-ABS)

FrM-t:s < T [x:81Fsy: Sy So <: Ty -
(T—SUB)) (T-SuB)
FEt:T rfxileSZ.T2
(T-ABs)
. . FAx:S1.85 ¢ 81—T
Where is this rule really needed? R
For applications. E.g., the term
(Ar:{x:Nat}. r.x) {x=0,y=1}
is not typable without using subsumption.
Where else??
Nowhere else! Uses of subsumption to help typecheck applications
are the only interesting ones.
Example (T-ABS) Example (T-APP on the left)
T <t S Spp <t T
[x:Si1Fsy: 8 S, <I To - - - - (S-Arrow)
(T-Sus) MFsy @ 811—812 S11—812 < T11—Tr2
[x:S1Fsy: Ty (T-SuB) —
(T-ABs) Esy @ T11—Ti2 MEsy : Tin
[FAx:S1.80 @ S1—T) (T-Arp)
(i s1 sy & Tio
becomes
. —— (S-REFL) I
r,thl}_SQ Sy S <8y S, <: Ty
(T-ABs) (S-ARROW)
(= >\X:Sl .Sy ¢ S1—S5 S1—Ss <: S1—Th
(T-Sus)
M=)\X:SI.SQ :S1—T)
Example (T-APP on the left) Example (T-APP on the right)
Ty <t 811 S12 <t T12
(S-ARROW) M= S . T2 T2 <t Tll
(= s1 ¢ S11—S1» S11—812 <: T11—T1o (T-SuB)
(T-Sus) - M=sy @ Tuu—T sy @ T
51 Tin—Ti MEsy @ Ty (T-App)
(T-Arp) M= s1 s Tio
[+ s1 s2 : Too
becomes
[Fsy: Ty T11 <0 Syp
(T-Sus)
(= s1 - S11—S1» M= s> ¢ S11
(T-App) —_—
M= s1 Sy & S1p S12 < Ti2
(T-Sus)

MEsy st Too

Example (T-APP on the right)

Example (T-SuB)

M-8, 1 Tp Ty < Ty Fs:S S<:U
(T-SuB) (T-SuB)
MEsy @ Tii—To NEsy @ T11 [Fs:U U<: T
(T-Aprp) (T-SuB)
IFs1 st T2 MlEs:T
becomes
(S-REFL)
To <t Tin Ti2 <t Ti2
(S-ARROW)
MN-sy @ Tn—Ti T11—T12 <8 To—Tio
(T-SuB) —_—
I'Fsl ZT2—>T12 I'FsQ:TQ
(T-Aprp)
M+ s1 s Tio
Example (T-SuB)
MEs:s S<iU
(T-SuB)
[Fs:U Ui T
(T-SuB)
M=s:T
becomes
s<tU Ui T
(S-TRANS)
Es:s ST

(T-SuB)

lEs: T

