
CIS 500
Software Foundations

Fall 2006

November 13

Metatheory of Subtyping

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule
can be “read from bottom to top” in a straightforward way.

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

If we are given some Γ and some t of the form t1 t2, we can try
to find a type for t by

1. finding (recursively) a type for t1

2. checking that it has the form T11→T12

3. finding (recursively) a type for t2

4. checking that it is the same as T11

Technically, the reason this works is that we can divide the
“positions” of the typing relation into input positions (Γ and t)
and output positions (T).

I For the input positions, all metavariables appearing in the
premises also appear in the conclusion (so we can calculate
inputs to the “subgoals” from the subexpressions of inputs to
the main goal)

I For the output positions, all metavariables appearing in the
conclusions also appear in the premises (so we can calculate
outputs from the main goal from the outputs of the subgoals)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

Syntax-directed sets of rules

The second important point about the simply typed
lambda-calculus is that the set of typing rules is syntax-directed, in
the sense that, for every “input” Γ and t, there one rule that can
be used to derive typing statements involving t.

E.g., if t is an application, then we must proceed by trying to use
T-App. If we succeed, then we have found a type (indeed, the
unique type) for t. If it fails, then we know that t is not typable.

−→ no backtracking!

Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of
syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be
used to give a type to terms of a given shape (the old one
plus T-Sub)

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

2. Worse yet, the new rule T-Sub itself is not syntax directed:
the inputs to the left-hand subgoal are exactly the same as
the inputs to the main goal!
(If we translated the typing rules naively into a typechecking
function, the case corresponding to T-Sub would cause
divergence.)



Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.

1. There are lots of ways to derive a given subtyping statement.

2. The transitivity rule

S <: U U <: T

S <: T
(S-Trans)

is badly non-syntax-directed: the premises contain a
metavariable (in an “input position”) that does not appear at
all in the conclusion.

To implement this rule naively, we’d have to guess a value for
U!

What to do?

1. Observation: We don’t need 1000 ways to prove a given
typing or subtyping statement — one is enough.

−→ Think more carefully about the typing and subtyping
systems to see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic”
(i.e., syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the
original ones in an appropriate sense.

What to do?

1. Observation: We don’t need 1000 ways to prove a given
typing or subtyping statement — one is enough.

−→ Think more carefully about the typing and subtyping
systems to see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic”
(i.e., syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the
original ones in an appropriate sense.

Developing an algorithmic
subtyping relation

Subtype relation

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

S <: Top (S-Top)

Issues

For a given subtyping statement, there are multiple rules that
could be used last in a derivation.

1. The conclusions of S-RcdWidth, S-RcdDepth, and
S-RcdPerm overlap with each other.

2. S-Refl and S-Trans overlap with every other rule.



Step 1: simplify record subtyping

Idea: combine all three record subtyping rules into one “macro
rule” that captures all of their effects

{li
i∈1..n} ⊆ {kj

j∈1..m} kj = li implies Sj <: Ti

{kj:Sj
j∈1..m} <: {li:Ti

i∈1..n}
(S-Rcd)

Simpler subtype relation

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

{li
i∈1..n} ⊆ {kj

j∈1..m} kj = li implies Sj <: Ti

{kj:Sj
j∈1..m} <: {li:Ti

i∈1..n}
(S-Rcd)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

S <: Top (S-Top)

Step 2: Get rid of reflexivity

Observation: S-Refl is unnecessary.

Lemma: S <: S can be derived for every type S without using
S-Refl.

Even simpler subtype relation

S <: U U <: T

S <: T
(S-Trans)

{li
i∈1..n} ⊆ {kj

j∈1..m} kj = li implies Sj <: Ti

{kj:Sj
j∈1..m} <: {li:Ti

i∈1..n}
(S-Rcd)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

S <: Top (S-Top)

Step 3: Get rid of transitivity

Observation: S-Trans is unnecessary.

Lemma: If S <: T can be derived, then it can be derived without
using S-Trans.

“Algorithmic” subtype relation

Ì S <: Top (SA-Top)

Ì T1 <: S1 Ì S2 <: T2

Ì S1→S2 <: T1→T2
(SA-Arrow)

{li
i∈1..n} ⊆ {kj

j∈1..m} for each kj = li , Ì Sj <: Ti

Ì {kj:Sj
j∈1..m} <: {li:Ti

i∈1..n}
(SA-Rcd)



Soundness and completeness

Theorem: S <: T iff Ì S <: T.

Proof: (Homework)

Terminology:

I The algorithmic presentation of subtyping is sound with
respect to the original if Ì S <: T implies S <: T.
(Everything validated by the algorithm is actually true.)

I The algorithmic presentation of subtyping is complete with
respect to the original if S <: T implies Ì S <: T.
(Everything true is validated by the algorithm.)

Subtyping Algorithm (pseudo-code)

The algorithmic rules can be translated directly into code:

subtype(S, T) =

if T = Top, then true
else if S = S1→S2 and T = T1→T2

then subtype(T1, S1) ∧ subtype(S2, T2)
else if S = {kj:Sj

j∈1..m} and T = {li:Ti
i∈1..n}

then {li
i∈1..n} ⊆ {kj

j∈1..m}
∧ for all i ∈ 1..n there is some j ∈ 1..m with kj = li

and subtype(Sj , Ti )
else false.

Decision Procedures

Recall: A decision procedure for a relation R ⊆ U is a total
function p from U to {true, false} such that p(u) = true iff u ∈ R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtyping rules, we have

1. if subtype(S, T) = true, then Ì S <: T
(hence, by soundness of the algorithmic rules, S <: T)

2. if subtype(S, T) = false, then not Ì S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?

Prove it!

Decision Procedures

Recall: A decision procedure for a relation R ⊆ U is a total
function p from U to {true, false} such that p(u) = true iff u ∈ R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtyping rules, we have

1. if subtype(S, T) = true, then Ì S <: T
(hence, by soundness of the algorithmic rules, S <: T)

2. if subtype(S, T) = false, then not Ì S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?

Prove it!

Decision Procedures

Recall: A decision procedure for a relation R ⊆ U is a total
function p from U to {true, false} such that p(u) = true iff u ∈ R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtyping rules, we have

1. if subtype(S, T) = true, then Ì S <: T
(hence, by soundness of the algorithmic rules, S <: T)

2. if subtype(S, T) = false, then not Ì S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?

Prove it!

Decision Procedures

Recall: A decision procedure for a relation R ⊆ U is a total
function p from U to {true, false} such that p(u) = true iff u ∈ R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtyping rules, we have

1. if subtype(S, T) = true, then Ì S <: T
(hence, by soundness of the algorithmic rules, S <: T)

2. if subtype(S, T) = false, then not Ì S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?

Prove it!



Decision Procedures

Recall: A decision procedure for a relation R ⊆ U is a total
function p from U to {true, false} such that p(u) = true iff u ∈ R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtyping rules, we have

1. if subtype(S, T) = true, then Ì S <: T
(hence, by soundness of the algorithmic rules, S <: T)

2. if subtype(S, T) = false, then not Ì S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?

Prove it!

Decision Procedures

Recall: A decision procedure for a relation R ⊆ U is a total
function p from U to {true, false} such that p(u) = true iff u ∈ R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtyping rules, we have

1. if subtype(S, T) = true, then Ì S <: T
(hence, by soundness of the algorithmic rules, S <: T)

2. if subtype(S, T) = false, then not Ì S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?

Prove it!

Metatheory of Typing

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

Where is this rule really needed?

For applications. E.g., the term

(λr:{x:Nat}. r.x) {x=0,y=1}

is not typable without using subsumption.

Where else??

Nowhere else! Uses of subsumption to help typecheck applications
are the only interesting ones.

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

Where is this rule really needed?

For applications. E.g., the term

(λr:{x:Nat}. r.x) {x=0,y=1}

is not typable without using subsumption.

Where else??

Nowhere else! Uses of subsumption to help typecheck applications
are the only interesting ones.

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

Where is this rule really needed?

For applications. E.g., the term

(λr:{x:Nat}. r.x) {x=0,y=1}

is not typable without using subsumption.

Where else??

Nowhere else! Uses of subsumption to help typecheck applications
are the only interesting ones.



Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

Where is this rule really needed?

For applications. E.g., the term

(λr:{x:Nat}. r.x) {x=0,y=1}

is not typable without using subsumption.

Where else??

Nowhere else! Uses of subsumption to help typecheck applications
are the only interesting ones.

Example (T-Abs)

...

Γ, x:S1 ` s2 : S2

...

S2 <: T2
(T-Sub)

Γ, x:S1 ` s2 : T2
(T-Abs)

Γ ` λx:S1.s2 : S1→T2

becomes
...

Γ, x:S1 ` s2 : S2
(T-Abs)

Γ ` λx:S1.s2 : S1→S2

(S-Refl)

S1 <: S1

...

S2 <: T2
(S-Arrow)

S1→S2 <: S1→T2
(T-Sub)

Γ ` λx:S1.s2 : S1→T2

Example (T-Abs)

...

Γ, x:S1 ` s2 : S2

...

S2 <: T2
(T-Sub)

Γ, x:S1 ` s2 : T2
(T-Abs)

Γ ` λx:S1.s2 : S1→T2

becomes
...

Γ, x:S1 ` s2 : S2
(T-Abs)

Γ ` λx:S1.s2 : S1→S2

(S-Refl)

S1 <: S1

...

S2 <: T2
(S-Arrow)

S1→S2 <: S1→T2
(T-Sub)

Γ ` λx:S1.s2 : S1→T2

Example (T-App on the left)

...

Γ ` s1 : S11→S12

...

T11 <: S11

...

S12 <: T12
(S-Arrow)

S11→S12 <: T11→T12
(T-Sub)

Γ ` s1 : T11→T12

...

Γ ` s2 : T11
(T-App)

Γ ` s1 s2 : T12

becomes

...

Γ ` s1 : S11→S12

...

Γ ` s2 : T11

...

T11 <: S11
(T-Sub)

Γ ` s2 : S11
(T-App)

Γ ` s1 s2 : S12

...

S12 <: T12
(T-Sub)

Γ ` s1 s2 : T12

Example (T-App on the left)

...

Γ ` s1 : S11→S12

...

T11 <: S11

...

S12 <: T12
(S-Arrow)

S11→S12 <: T11→T12
(T-Sub)

Γ ` s1 : T11→T12

...

Γ ` s2 : T11
(T-App)

Γ ` s1 s2 : T12

becomes

...

Γ ` s1 : S11→S12

...

Γ ` s2 : T11

...

T11 <: S11
(T-Sub)

Γ ` s2 : S11
(T-App)

Γ ` s1 s2 : S12

...

S12 <: T12
(T-Sub)

Γ ` s1 s2 : T12

Example (T-App on the right)

...

Γ ` s1 : T11→T12

...

Γ ` s2 : T2

...

T2 <: T11
(T-Sub)

Γ ` s2 : T11
(T-App)

Γ ` s1 s2 : T12

becomes

...

Γ ` s1 : T11→T12

...

T2 <: T11

(S-Refl)

T12 <: T12
(S-Arrow)

T11→T12 <: T2→T12
(T-Sub)

Γ ` s1 : T2→T12

...

Γ ` s2 : T2
(T-App)

Γ ` s1 s2 : T12



Example (T-App on the right)

...

Γ ` s1 : T11→T12

...

Γ ` s2 : T2

...

T2 <: T11
(T-Sub)

Γ ` s2 : T11
(T-App)

Γ ` s1 s2 : T12

becomes

...

Γ ` s1 : T11→T12

...

T2 <: T11

(S-Refl)

T12 <: T12
(S-Arrow)

T11→T12 <: T2→T12
(T-Sub)

Γ ` s1 : T2→T12

...

Γ ` s2 : T2
(T-App)

Γ ` s1 s2 : T12

Example (T-Sub)

...

Γ ` s : S

...

S <: U
(T-Sub)

Γ ` s : U

...

U <: T
(T-Sub)

Γ ` s : T

becomes

...

Γ ` s : S

...

S <: U

...

U <: T
(S-Trans)

S <: T
(T-Sub)

Γ ` s : T

Example (T-Sub)

...

Γ ` s : S

...

S <: U
(T-Sub)

Γ ` s : U

...

U <: T
(T-Sub)

Γ ` s : T

becomes

...

Γ ` s : S

...

S <: U

...

U <: T
(S-Trans)

S <: T
(T-Sub)

Γ ` s : T


