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From last time...

Decision Procedures (take 1)

A decision function for a relation R ⊆ U is a total function p from
U to {true, false} such that p(u) = true iff u ∈ R.

Example:

U = {1, 2, 3}
R = {(1, 2), (2, 3)}

Decision Procedures (take 1)

A decision function for a relation R ⊆ U is a total function p from
U to {true, false} such that p(u) = true iff u ∈ R.

Example:

U = {1, 2, 3}
R = {(1, 2), (2, 3)}

Note that, for now, we are saying absolutely nothing about
computability. We’ll come back to this in a moment.

Decision Procedures (take 1)

A decision function for a relation R ⊆ U is a total function p from
U to {true, false} such that p(u) = true iff u ∈ R.

Example:

U = {1, 2, 3}
R = {(1, 2), (2, 3)}

The function p whose graph is

{ ((1, 2), true), ((2, 3), true),
((1, 1), false), ((1, 3), false),
((2, 1), false), ((2, 2), false),
((3, 1), false), ((3, 2), false), ((3, 3), false)}

is a decision function for R.

Decision Procedures (take 1)

A decision function for a relation R ⊆ U is a total function p from
U to {true, false} such that p(u) = true iff u ∈ R.

Example:

U = {1, 2, 3}
R = {(1, 2), (2, 3)}

The function p′ whose graph is

{((1, 2), true), ((2, 3), true)}

is not a decision function for R.



Decision Procedures (take 1)

A decision function for a relation R ⊆ U is a total function p from
U to {true, false} such that p(u) = true iff u ∈ R.

Example:

U = {1, 2, 3}
R = {(1, 2), (2, 3)}

The function p′′ whose graph is

{((1, 2), true), ((2, 3), true), ((1, 3), false)}

is also not a decision function for R.

Decision Procedures (take 2)

Of course, we want a decision procedure to be a procedure.

A decision procedure for a relation R ⊆ U is a computable total
function p from U to {true, false} such that p(u) = true iff u ∈ R.

Example

U = {1, 2, 3}
R = {(1, 2), (2, 3)}

Example

U = {1, 2, 3}
R = {(1, 2), (2, 3)}

The function

p(x , y) = if x = 2 and y = 3 then true
else if x = 1 and y = 2 then true
else false

whose graph is

{ ((1, 2), true), ((2, 3), true),
((1, 1), false), ((1, 3), false),
((2, 1), false), ((2, 2), false),
((3, 1), false), ((3, 2), false), ((3, 3), false)}

is a decision procedure for R.

Example

U = {1, 2, 3}
R = {(1, 2), (2, 3)}

The recursively defined partial function

p(x , y) = if x = 2 and y = 3 then true
else if x = 1 and y = 2 then true
else if x = 1 and y = 3 then false
else p(x , y)

whose graph is

{ ((1, 2), true), ((2, 3), true), ((1, 3), false)}

is not a decision procedure for R.

Subtyping Algorithm

This recursively defined total function is a decision procedure for
the subtype relation:

subtype(S, T) =

if T = Top, then true
else if S = S1→S2 and T = T1→T2

then subtype(T1, S1) ∧ subtype(S2, T2)
else if S = {kj:Sj

j∈1..m} and T = {li:Ti
i∈1..n}

then {li
i∈1..n} ⊆ {kj

j∈1..m}
∧ for all i ∈ 1..n there is some j ∈ 1..m with kj = li

and subtype(Sj , Ti )
else false.

To show this, we need to prove:

1. that it returns true whenever S <: T, and

2. that it returns either true or false on all inputs.



Subtyping Algorithm

But this recursively defined partial function is not:

subtype(S, T) =

if T = Top, then true
else if S = S1→S2 and T = T1→T2

then subtype(T1, S1) ∧ subtype(S2, T2)
else if S = {kj:Sj

j∈1..m} and T = {li:Ti
i∈1..n}

then {li
i∈1..n} ⊆ {kj

j∈1..m}
∧ for all i ∈ 1..n there is some j ∈ 1..m with kj = li

and subtype(Sj , Ti )
else subtype(T,S)

Algorithmic Typing

Algorithmic typing

I How do we implement a type checker for the lambda-calculus
with subtyping?

I Given a context Γ and a term t, how do we determine its type
T, such that Γ ` t : T?

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

We observed above that this rule is sometimes required when
typechecking applications:

E.g., the term

(λr:{x:Nat}. r.x) {x=0,y=1}

is not typable without using subsumption.

But we conjectured that applications were the only critical uses of
subsumption.

Plan

1. Investigate how subsumption is used in typing derivations by
looking at examples of how it can be “pushed through” other
rules

2. Use the intuitions gained from this exercise to design a new,
algorithmic typing relation that

I omits subsumption
I compensates for its absence by enriching the application rule

3. Show that the algorithmic typing relation is essentially
equivalent to the original, declarative one

Example (T-Sub with T-Abs)

...

Γ, x:S1 ` s2 : S2

...

S2 <: T2
(T-Sub)

Γ, x:S1 ` s2 : T2
(T-Abs)

Γ ` λx:S1.s2 : S1→T2

becomes
...

Γ, x:S1 ` s2 : S2
(T-Abs)

Γ ` λx:S1.s2 : S1→S2

(S-Refl)

S1 <: S1

...

S2 <: T2
(S-Arrow)

S1→S2 <: S1→T2
(T-Sub)

Γ ` λx:S1.s2 : S1→T2



Example (T-Sub with T-Abs)

...

Γ, x:S1 ` s2 : S2

...

S2 <: T2
(T-Sub)

Γ, x:S1 ` s2 : T2
(T-Abs)

Γ ` λx:S1.s2 : S1→T2

becomes
...

Γ, x:S1 ` s2 : S2
(T-Abs)

Γ ` λx:S1.s2 : S1→S2

(S-Refl)

S1 <: S1

...

S2 <: T2
(S-Arrow)

S1→S2 <: S1→T2
(T-Sub)

Γ ` λx:S1.s2 : S1→T2

Example (T-Sub with T-Rcd)

for each i

...

Γ ` ti : Si

...

Si <: Ti
(T-Sub)

Γ ` ti : Ti
(T-Rcd)

Γ ` {li =ti
i∈1..n} : {li:Ti

i∈1..n}

Intuitions

These examples show that we do not need T-Sub to “enable”
T-Abs or T-Rcd: given any typing derivation, we can construct a
derivation with the same conclusion in which T-Sub is never used
immediately before T-Abs or T-Rcd.

What about T-App?
We’ve already observed that T-Sub is required for typechecking
some applications. So we expect to find that we cannot play the
same game with T-App as we’ve done with T-Abs and T-Rcd.
Let’s see why.

Example (T-Sub with T-App on the left)

...

Γ ` s1 : S11→S12

...

T11 <: S11

...

S12 <: T12
(S-Arrow)

S11→S12 <: T11→T12
(T-Sub)

Γ ` s1 : T11→T12

...

Γ ` s2 : T11
(T-App)

Γ ` s1 s2 : T12

becomes

...

Γ ` s1 : S11→S12

...

Γ ` s2 : T11

...

T11 <: S11
(T-Sub)

Γ ` s2 : S11
(T-App)

Γ ` s1 s2 : S12

...

S12 <: T12
(T-Sub)

Γ ` s1 s2 : T12

Example (T-Sub with T-App on the left)

...

Γ ` s1 : S11→S12

...

T11 <: S11

...

S12 <: T12
(S-Arrow)

S11→S12 <: T11→T12
(T-Sub)

Γ ` s1 : T11→T12

...

Γ ` s2 : T11
(T-App)

Γ ` s1 s2 : T12

becomes

...

Γ ` s1 : S11→S12

...

Γ ` s2 : T11

...

T11 <: S11
(T-Sub)

Γ ` s2 : S11
(T-App)

Γ ` s1 s2 : S12

...

S12 <: T12
(T-Sub)

Γ ` s1 s2 : T12

Example (T-Sub with T-App on the right)

...

Γ ` s1 : T11→T12

...

Γ ` s2 : T2

...

T2 <: T11
(T-Sub)

Γ ` s2 : T11
(T-App)

Γ ` s1 s2 : T12

becomes

...

Γ ` s1 : T11→T12

...

T2 <: T11

(S-Refl)

T12 <: T12
(S-Arrow)

T11→T12 <: T2→T12
(T-Sub)

Γ ` s1 : T2→T12

...

Γ ` s2 : T2
(T-App)

Γ ` s1 s2 : T12



Example (T-Sub with T-App on the right)

...

Γ ` s1 : T11→T12

...

Γ ` s2 : T2

...

T2 <: T11
(T-Sub)

Γ ` s2 : T11
(T-App)

Γ ` s1 s2 : T12

becomes

...

Γ ` s1 : T11→T12

...

T2 <: T11

(S-Refl)

T12 <: T12
(S-Arrow)

T11→T12 <: T2→T12
(T-Sub)

Γ ` s1 : T2→T12

...

Γ ` s2 : T2
(T-App)

Γ ` s1 s2 : T12

Intuitions

So we’ve seen that uses of subsumption can be “pushed” from one
of immediately before T-App’s premises to the other, but cannot
be completely eliminated.

Example (nested uses of T-Sub)

...

Γ ` s : S

...

S <: U
(T-Sub)

Γ ` s : U

...

U <: T
(T-Sub)

Γ ` s : T

becomes

...

Γ ` s : S

...

S <: U

...

U <: T
(S-Trans)

S <: T
(T-Sub)

Γ ` s : T

Example (nested uses of T-Sub)

...

Γ ` s : S

...

S <: U
(T-Sub)

Γ ` s : U

...

U <: T
(T-Sub)

Γ ` s : T

becomes

...

Γ ` s : S

...

S <: U

...

U <: T
(S-Trans)

S <: T
(T-Sub)

Γ ` s : T

Summary

What we’ve learned:
I Uses of the T-Sub rule can be “pushed down” through typing

derivations until they encounter either

1. a use of T-App or
2. the root fo the derivation tree.

I In both cases, multiple uses of T-Sub can be collapsed into a
single one.

This suggests a notion of “normal form” for typing derivations, in
which there is

I exactly one use of T-Sub before each use of T-App

I one use of T-Sub at the very end of the derivation

I no uses of T-Sub anywhere else.
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single one.
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I no uses of T-Sub anywhere else.



Algorithmic Typing

The next step is to “build in” the use of subsumption in
application rules, by changing the T-App rule to incorporate a
subtyping premise.

Γ ` t1 : T11→T12 Γ ` t2 : T2 ` T2 <: T11

Γ ` t1 t2 : T12

Given any typing derivation, we can now

1. normalize it, to move all uses of subsumption to either just
before applications (in the right-hand premise) or at the very
end

2. replace uses of T-App with T-Sub in the right-hand premise
by uses of the extended rule above

This yields a derivation in which there is just one use of
subsumption, at the very end!

Minimal Types

But... if subsumption is only used at the very end of derivations,
then it is actually not needed in order to show that any term is
typable!
It is just used to give more types to terms that have already been
shown to have a type.

In other words, if we dropped subsumption completely (after
refining the application rule), we would still be able to give types
to exactly the same set of terms — we just would not be able to
give as many types to some of them.

If we drop subsumption, then the remaining rules will assign a
unique, minimal type to each typable term.

For purposes of building a typechecking algorithm, this is enough.

Final Algorithmic Typing Rules

x:T ∈ Γ

Γ Ì x : T
(TA-Var)

Γ, x:T1 Ì t2 : T2

Γ Ì λx:T1.t2 : T1→T2
(TA-Abs)

Γ Ì t1 : T1 T1 = T11→T12 Γ Ì t2 : T2 Ì T2 <: T11

Γ Ì t1 t2 : T12

(TA-App)

for each i Γ Ì ti : Ti

Γ Ì {l1=t1 . . . ln=tn} : {l1:T1 . . . ln:Tn}
(TA-Rcd)

Γ Ì t1 : R1 R1 = {l1:T1 . . . ln:Tn}

Γ Ì t1.li : Ti
(TA-Proj)

Soundness of the algorithmic rules

Theorem: If Γ Ì t : T, then Γ ` t : T.

Completeness of the algorithmic rules

Theorem [Minimal Typing]: If Γ ` t : T, then Γ Ì t : S for
some S <: T.

Proof: Induction on typing derivation. (Details on this week’s
homework.)

(N.b.: All the messing around with transforming derivations was
just to build intuitions and decide what algorithmic rules to write
down and what property to prove: the proof itself is a
straightforward induction on typing derivations.)

Completeness of the algorithmic rules

Theorem [Minimal Typing]: If Γ ` t : T, then Γ Ì t : S for
some S <: T.

Proof: Induction on typing derivation. (Details on this week’s
homework.)

(N.b.: All the messing around with transforming derivations was
just to build intuitions and decide what algorithmic rules to write
down and what property to prove: the proof itself is a
straightforward induction on typing derivations.)



Meets and Joins

Adding Booleans

Suppose we want to add booleans and conditionals to the language
we have been discussing.
For the declarative presentation of the system, we just add in the
appropriate syntactic forms, evaluation rules, and typing rules.

Γ ` true : Bool (T-True)
Γ ` false : Bool (T-False)

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T
(T-If)

A Problem with Conditional Expressions

For the algorithmic presentation of the system, however, we
encounter a little difficulty.

What is the minimal type of

if true then {x=true,y=false} else {x=true,z=true}

?

The Algorithmic Conditional Rule

More generally, we can use subsumption to give an expression

if t1 then t2 else t3

any type that is a possible type of both t2 and t3.

So the minimal type of the conditional is the least common
supertype (or join) of the minimal type of t2 and the minimal type
of t3.

Γ Ì t1 : Bool Γ Ì t2 : T2 Γ Ì t3 : T3

Γ Ì if t1 then t2 else t3 : T2 ∨ T3
(T-If)

Does such a type exist for every T2 and T3??

The Algorithmic Conditional Rule

More generally, we can use subsumption to give an expression

if t1 then t2 else t3

any type that is a possible type of both t2 and t3.

So the minimal type of the conditional is the least common
supertype (or join) of the minimal type of t2 and the minimal type
of t3.

Γ Ì t1 : Bool Γ Ì t2 : T2 Γ Ì t3 : T3

Γ Ì if t1 then t2 else t3 : T2 ∨ T3
(T-If)

Does such a type exist for every T2 and T3??

Existence of Joins

Theorem: For every pair of types S and T, there is a type J such
that

1. S <: J

2. T <: J

3. If K is a type such that S <: K and T <: K, then J <: K.

I.e., J is the smallest type that is a supertype of both S and T.



Examples

What are the joins of the following pairs of types?

1. {x:Bool,y:Bool} and {y:Bool,z:Bool}?

2. {x:Bool} and {y:Bool}?

3. {x:{a:Bool,b:Bool}} and
{x:{b:Bool,c:Bool}, y:Bool}?

4. {} and Bool?

5. {x:{}} and {x:Bool}?

6. Top→{x:Bool} and Top→{y:Bool}?

7. {x:Bool}→Top and {y:Bool}→Top?

Meets

To calculate joins of arrow types, we also need to be able to
calculate meets (greatest lower bounds)!

Unlike joins, meets do not necessarily exist.
E.g., Bool→Bool and {} have no common subtypes, so they
certainly don’t have a greatest one!

However...

Existence of Meets

Theorem: For every pair of types S and T, if there is any type N
such that N <: S and N <: T, then there is a type M such that

1. M <: S

2. M <: T

3. If O is a type such that O <: S and O <: T, then O <: M.

I.e., M (when it exists) is the largest type that is a subtype of both
S and T.

Jargon: In the simply typed lambda calculus with subtyping,
records, and booleans...

I The subtype relation has joins

I The subtype relation has bounded meets

Examples

What are the meets of the following pairs of types?

1. {x:Bool,y:Bool} and {y:Bool,z:Bool}?

2. {x:Bool} and {y:Bool}?

3. {x:{a:Bool,b:Bool}} and
{x:{b:Bool,c:Bool}, y:Bool}?

4. {} and Bool?

5. {x:{}} and {x:Bool}?

6. Top→{x:Bool} and Top→{y:Bool}?

7. {x:Bool}→Top and {y:Bool}→Top?

Calculating Joins

S ∨ T =



Bool if S = T = Bool
M1→J2 if S = S1→S2 T = T1→T2

S1 ∧ T1 = M1 S2 ∨ T2 = J2

{jl:Jl
l∈1..q} if S = {kj:Sj

j∈1..m}
T = {li:Ti

i∈1..n}
{jl

l∈1..q} = {kj
j∈1..m} ∩ {li

i∈1..n}
Sj ∨ Ti = Jl for each jl = kj = li

Top otherwise

Calculating Meets

S ∧ T =

S if T = Top
T if S = Top
Bool if S = T = Bool
J1→M2 if S = S1→S2 T = T1→T2

S1 ∨ T1 = J1 S2 ∧ T2 = M2

{ml:Ml
l∈1..q} if S = {kj:Sj

j∈1..m}
T = {li:Ti

i∈1..n}
{ml

l∈1..q} = {kj
j∈1..m} ∪ {li

i∈1..n}
Sj ∧ Ti = Ml for each ml = kj = li

Ml = Sj if ml = kj occurs only in S
Ml = Ti if ml = li occurs only in T

f ail otherwise


