
CIS 500
Software Foundations

Fall 2006

November 22

Continuing with Objects

Calling between methods

What if counters have set, get, and inc methods:

SetCounter = {get:Unit→Nat, set:Nat→Unit, inc:Unit→Unit};

setCounterClass =
λr:CounterRep.

{get = λ_:Unit. !(r.x),
set = λi:Nat. r.x:=i,
inc = λ_:Unit. r.x:=(succ r.x) });

Bad style: The functionality of inc could be expressed in terms of
the functionality of get and set.

Can we rewrite this class so that the get/set functionality appears
just once?

Calling between methods

What if counters have set, get, and inc methods:

SetCounter = {get:Unit→Nat, set:Nat→Unit, inc:Unit→Unit};

setCounterClass =
λr:CounterRep.

{get = λ_:Unit. !(r.x),
set = λi:Nat. r.x:=i,
inc = λ_:Unit. r.x:=(succ r.x) });

Bad style: The functionality of inc could be expressed in terms of
the functionality of get and set.

Can we rewrite this class so that the get/set functionality appears
just once?

Calling between methods

In Java we would write:
class SetCounter {

protected int x = 0;
int get () { return x; }
void set (int i) { x = i; }
void inc () { this.set(this.get() + 1); }

}

Better...

setCounterClass =
λr:CounterRep.
fix
(λthis: SetCounter.
{get = λ_:Unit. !(r.x),
set = λi:Nat. r.x:=i,
inc = λ_:Unit. this.set (succ (this.get unit))});

Check: the type of the inner λ-abstraction is
SetCounter→SetCounter, so the type of the fix expression is
SetCounter.

This is just a definition of a group of mutually recursive functions.

Note that the fixed point in

setCounterClass =
λr:CounterRep.
fix
(λthis: SetCounter.
{get = λ_:Unit. !(r.x),
set = λi:Nat. r.x:=i,
inc = λ_:Unit. this.set (succ (this.get unit))});

is “closed” — we “tie the knot” when we build the record.

So this does not model the behavior of this (or self) in real OO
languages.

Idea: move the application of fix from the class definition...

setCounterClass =
λr:CounterRep.

λthis: SetCounter.
{get = λ_:Unit. !(r.x),
set = λi:Nat. r.x:=i,
inc = λ_:Unit. this.set (succ(this.get unit))};

...to the object creation function:

newSetCounter =
λ_:Unit. let r = {x=ref 1} in

fix (setCounterClass r);

In essence, we are switching the order of fix and
λr:CounterRep...

Note that we have changed the types of classes from...
setCounterClass =

λr:CounterRep.
fix
(λthis: SetCounter.
{get = λ_:Unit. !(r.x),
set = λi:Nat. r.x:=i,
inc = λ_:Unit. this.set (succ (this.get unit))});

=⇒ setCounterClass : CounterRep → SetCounter

... to:
setCounterClass =

λr:CounterRep.
λthis: SetCounter.
{get = λ_:Unit. !(r.x),
set = λi:Nat. r.x:=i,
inc = λ_:Unit. this.set (succ(this.get unit))};

=⇒
setCounterClass : CounterRep → SetCounter → SetCounter

Using this

Let’s continue the example by defining a new class of counter
objects (a subclass of set-counters) that keeps a record of the
number of times the set method has ever been called.

InstrCounter = {get:Unit→Nat, set:Nat→Unit,
inc:Unit→Unit, accesses:Unit→Nat};

InstrCounterRep = {x: Ref Nat, a: Ref Nat};

instrCounterClass =
λr:InstrCounterRep.

λthis: InstrCounter.
let super = setCounterClass r this in
{get = super.get,
set = λi:Nat. (r.a:=succ(!(r.a)); super.set i),
inc = super.inc,
accesses = λ_:Unit. !(r.a)};

=⇒ instrCounterClass :

InstrCounterRep → InstrCounter → InstrCounter

Notes:

I the methods use both this (which is passed as a parameter)
and super (which is constructed using this and the instance
variables)

I the inc in super will call the set defined here, which calls
the superclass set

I suptyping plays a crucial role (twice) in the call to
setCounterClass

One more refinement...

A small fly in the ointment

The implementation we have given for instrumented counters is
not very useful because calling the object creation function

newInstrCounter =
λ_:Unit. let r = {x=ref 1, a=ref 0} in

fix (instrCounterClass r);
will cause the evaluator to diverge!

Intuitively (see TAPL for details), the problem is the “unprotected”
use of this in the call to setCounterClass in
instrCounterClass:

instrCounterClass =
λr:InstrCounterRep.

λthis: InstrCounter.
let super = setCounterClass r this in

...

To see why this diverges, consider a simpler example:
ff = λf:Nat→Nat.

let f′ = f in
λn:Nat. 0

=⇒ ff : (Nat→Nat) → (Nat→Nat)

Now:
fix ff −→ let f′ = (fix ff) in λn:Nat. 0

−→ let f′ = ff (fix ff) in λn:Nat. 0
−→ uh oh...

One possible solution

Idea: “delay” this by putting a dummy abstraction in front of it...

setCounterClass =
λr:CounterRep.
λthis: Unit→SetCounter.

λ_:Unit.
{get = λ_:Unit. !(r.x),
set = λi:Nat. r.x:=i,
inc = λ_:Unit. (this unit).set

(succ((this unit).get unit))};
=⇒ setCounterClass :

CounterRep → (Unit→SetCounter) → (Unit→SetCounter)

newSetCounter =
λ_:Unit. let r = {x=ref 1} in

fix (setCounterClass r) unit;

Similarly:

instrCounterClass =
λr:InstrCounterRep.
λthis: Unit→InstrCounter.

λ_:Unit.
let super = setCounterClass r this unit in

{get = super.get,
set = λi:Nat. (r.a:=succ(!(r.a)); super.set i),
inc = super.inc,
accesses = λ_:Unit. !(r.a)};

newInstrCounter =
λ_:Unit. let r = {x=ref 1, a=ref 0} in

fix (instrCounterClass r) unit;

Success

This works, in the sense that we can now instantiate
instrCounterClass (without diverging!), and its instances
behave in the way we intended.

However, all the “delaying” we added has an unfortunate side
effect: instead of computing the “method table” just once, when
an object is created, we will now re-compute it every time we
invoke a method!

Section 18.12 in TAPL shows how this can be repaired by using
references instead of fix to “tie the knot” in the method table.

Success (?)

This works, in the sense that we can now instantiate
instrCounterClass (without diverging!), and its instances
behave in the way we intended.

However, all the “delaying” we added has an unfortunate side
effect: instead of computing the “method table” just once, when
an object is created, we will now re-compute it every time we
invoke a method!

Section 18.12 in TAPL shows how this can be repaired by using
references instead of fix to “tie the knot” in the method table.

Recap

Multiple representations

All the objects we have built in this series of examples have type
Counter.

But their internal representations vary widely.

Encapsulation

An object is a record of functions, which maintain common
internal state via a shared reference to a record of mutable
instance variables.

This state is inaccessible outside of the object because there is no
way to name it. (Instance variables can only be named from inside
the methods.)

Subtyping

Subtyping between object types is just ordinary subtyping between
types of records of functions.

Functions like inc3 that expect Counter objects as parameters
can (safely) be called with objects belonging to any subtype of
Counter.

Inheritance

Classes are data structures that can be both extended and
instantiated.

We modeled inheritance by copying implementations of methods
from superclasses to subclasses.

Each class

I waits to be told a record r of instance variables and an object
this (which should have the same interface and be based on
the same record of instance variables)

I uses r and this to instantiate its superclass

I constructs a record of method implementations, copying some
directly from super and implementing others in terms of
this and super.

The this parameter is “resolved” at object creation time using
fix.

Additional exercise

Take all the examples from this lecture (and the previous one), and
recode them in Java.

[Not to be handed in — just for you to check your understanding.]

