
CIS 500
Software Foundations

Fall 2006

November 27



Recap



Last week

The lectures last week developed a series of increasingly
sophisticated examples of “OO-style programming” in a typed
lambda-calculus.



Multiple representations

All the objects in all the examples have type Counter (and
sometimes more specific types).

But their internal representations vary widely.



Encapsulation

An object is a record of functions, which maintain common
internal state via a shared reference to a record of mutable
instance variables.

This state is inaccessible outside of the object because there is no
way to name it. (Lexical scoping ensures that instance variable
records can only be named inside the methods.)



Subtyping

Subtyping between object types is just ordinary subtyping between
types of records of functions.

Functions like inc3 that expect Counter objects as parameters
can (safely) be called with objects belonging to any subtype of
Counter.



Inheritance

Classes are data structures that can be both extended and
instantiated.

We modeled inheritance by copying implementations of methods
from superclasses to subclasses.

Each class

I waits to be told a record r of instance variables and an object
this (which should have the same interface and be based on
the same record of instance variables)

I uses r and this to instantiate its superclass

I constructs a record of method implementations, copying some
directly from super and implementing others in terms of
this and super.

The this parameter is “resolved” at object creation time using
fix.



Where we are...



The essence of objects

I Dynamic dispatch

I Encapsulation of state with behavior

I Behavior-based subtyping

I Inheritance (incremental definition of behaviors)

I Access of super class

I “Open recursion” through this



What’s missing (wrt. Java, say)

We haven’t really captured the peculiar status of classes (which are
both run-time and compile-time things) — we’ve captured the
run-time aspect, but not the way in which classes get used as types
in Java.

Also not named types with declared subtyping

Nor recursive types

Nor run-time type analysis (casting, etc.)

(... nor lots of other stuff)



Modeling Java



About models (of things in general)

No such thing as a “perfect model” — The nature of a model is to
abstract away from details!

So models are never just “good” [or “bad”]: they are always “good
[or bad] for some specific set of purposes.”



Models of Java

Lots of different purposes −→ lots of different kinds of models

I Source-level vs. bytecode level

I Large (inclusive) vs. small (simple) models

I Models of type system vs. models of run-time features (not
entirely separate issues)

I Models of specific features (exceptions, concurrency,
reflection, class loading, ...)

I Models designed for extension



Featherweight Java

Purpose: model “core OO features” and their types and nothing
else.

History:

I Originally proposed by a Penn PhD student (Atsushi Igarashi)
as a tool for analyzing GJ (“Java plus generics”), which later
became Java 1.5

I Since used by many others for studying a wide variety of Java
features and proposed extensions



Things left out

I Reflection, concurrency, class loading, inner classes, ...

I Exceptions, loops, ...

I Interfaces, overloading, ...

I Assignment (!!)



Things left in

I Classes and objects

I Methods and method invocation

I Fields and field access

I Inheritance (including open recursion through this)

I Casting



Example

class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {
Object fst;
Object snd;

Pair(Object fst, Object snd) {
super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {
return new Pair(newfst, this.snd); }

}



Conventions

For syntactic regularity...

I Always include superclass (even when it is Object)

I Always write out constructor (even when trivial)

I Always call super from constructor (even when no arguments
are passed)

I Always explicitly name receiver object in method invocation or
field access (even when it is this)

I Methods always consist of a single return expression
I Constructors always

I Take same number (and types) of parameters as fields of the
class

I Assign constructor parameters to “local fields”
I Call super constructor to assign remaining fields
I Do nothing else



Formalizing FJ



Nominal type systems

Big dichotomy in the world of programming languages:
I Structural type systems:

I What matters about a type (for typing, subtyping, etc.) is just
its structure.

I Names are just convenient (but inessential) abbreviations.

I Nominal type systems:
I Types are always named.
I Typechecker mostly manipulates names, not structures.
I Subtyping is declared explicitly by programmer (and checked

for consistency by compiler).



Advantages of Structural Systems

Somewhat simpler, cleaner, and more elegant (no need to always
work wrt. a set of “name definitions”)

Easier to extend (e.g. with parametric polymorphism)

(Caveat: when recursive types are considered, some of this
simplicity and elegance slips away...)



Advantages of Nominal Systems

Recursive types fall out easily

Using names everywhere makes typechecking (and subtyping, etc.)
easy and efficient

Type names are also useful at run-time (for casting, type testing,
reflection, ...).

Java (like most other mainstream languages) is a nominal system.



Representing objects

Our decision to omit assignment has a nice side effect...

The only ways in which two objects can differ are (1) their classes
and (2) the parameters passed to their constructor when they were
created.

All this information is available in the new expression that creates
an object. So we can identify the created object with the new
expression.

Formally: object values have the form new C(v)



FJ Syntax



Syntax (terms and values)

t ::= terms
x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C) t cast

v ::= values
new C(v) object creation



Syntax (methods and classes)

K ::= constructor declarations
C(C f) {super(f); this.f=f;}

M ::= method declarations
C m(C x) {return t;}

CL ::= class declarations
class C extends C {C f; K M}



Subtyping



Subtyping

As in Java, subtyping in FJ is declared.

Assume we have a (global, fixed) class table CT mapping class
names to definitions.

CT(C) = class C extends D {...}

C <: D

C <: C

C <: D D <: E

C <: E



More auxiliary definitions

From the class table, we can read off a number of other useful
properties of the definitions (which we will need later for
typechecking and operational semantics)...



Field(s) lookup

fields(Object) = ∅

CT(C) = class C extends D {C f; K M}
fields(D) = D g

fields(C) = D g, C f



Method type lookup

CT(C) = class C extends D {C f; K M}
B m (B x) {return t;} ∈ M

mtype(m, C) = B→B

CT(C) = class C extends D {C f; K M}
m is not defined in M

mtype(m, C) = mtype(m, D)



Method body lookup

CT(C) = class C extends D {C f; K M}
B m (B x) {return t;} ∈ M

mbody(m, C) = (x, t)

CT(C) = class C extends D {C f; K M}
m is not defined in M

mbody(m, C) = mbody(m, D)



Valid method overriding

mtype(m, D) = D→D0 implies C = D and C0 = D0

override(m, D, C→C0)



Evaluation



The example again

class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {
Object fst;
Object snd;

Pair(Object fst, Object snd) {
super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {
return new Pair(newfst, this.snd); }

}



Evaluation

Projection:

new Pair(new A(), new B()).snd −→ new B()



Evaluation

Casting:

(Pair)new Pair(new A(), new B())
−→ new Pair(new A(), new B())



Evaluation

Method invocation:

new Pair(new A(), new B()).setfst(new B())

−→
[
newfst 7→ new B(),
this 7→ new Pair(new A(),new B())

]
new Pair(newfst, this.snd)

i.e., new Pair(new B(), new Pair(new A(), new B()).snd)



((Pair) (new Pair(new Pair(new A(),new B()), new A())
.fst).snd

−→ ((Pair)new Pair(new A(),new B())).snd
−→ new Pair(new A(), new B()).snd
−→ new B()



Evaluation rules

fields(C) = C f

(new C(v)).fi −→ vi
(E-ProjNew)

mbody(m, C) = (x, t0)

(new C(v)).m(u)
−→ [x 7→ u, this 7→ new C(v)]t0

(E-InvkNew)

C <: D

(D)(new C(v)) −→ new C(v)
(E-CastNew)

plus some congruence rules...



t0 −→ t′
0

t0.f −→ t′
0.f

(E-Field)

t0 −→ t′
0

t0.m(t) −→ t′
0.m(t)

(E-Invk-Recv)

ti −→ t′
i

v0.m(v, ti, t) −→ v0.m(v, t′
i, t)

(E-Invk-Arg)

ti −→ t′
i

new C(v, ti, t) −→ new C(v, t′
i, t)

(E-New-Arg)

t0 −→ t′
0

(C)t0 −→ (C)t′
0

(E-Cast)



Typing



Notes

FJ has no rule of subsumption (because we want to follow Java).
The typing rules are algorithmic.

(Where would this make a difference?...)



Typing rules

x:C ∈ Γ

Γ ` x : C
(T-Var)



Typing rules

Γ ` t0 : C0 fields(C0) = C f

Γ ` t0.fi : Ci
(T-Field)



Typing rules

Γ ` t0 : D D <: C

Γ ` (C)t0 : C
(T-UCast)

Γ ` t0 : D C <: D C 6= D

Γ ` (C)t0 : C
(T-DCast)

Why two cast rules?

Because that’s how Java does it!



Typing rules

Γ ` t0 : D D <: C

Γ ` (C)t0 : C
(T-UCast)

Γ ` t0 : D C <: D C 6= D

Γ ` (C)t0 : C
(T-DCast)

Why two cast rules? Because that’s how Java does it!



Typing rules

Γ ` t0 : C0

mtype(m, C0) = D→C
Γ ` t : C C <: D

Γ ` t0.m(t) : C
(T-Invk)

Note that this rule “has subsumption built in” — i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??



Typing rules

Γ ` t0 : C0

mtype(m, C0) = D→C
Γ ` t : C C <: D

Γ ` t0.m(t) : C
(T-Invk)

Note that this rule “has subsumption built in” — i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??



Typing rules

Γ ` t0 : C0

mtype(m, C0) = D→C
Γ ` t : C C <: D

Γ ` t0.m(t) : C
(T-Invk)

Note that this rule “has subsumption built in” — i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??



Java typing is algorithmic

The Java typing relation is defined in the algorithmic style, for (at
least) two reasons:

1. In order to perform static overloading resolution, we need to
be able to speak of “the type” of an expression

2. We would otherwise run into trouble with typing of
conditional expressions

Let’s look at the second in more detail...



Java typing must be algorithmic

We haven’t included them in FJ, but full Java has both interfaces
and conditional expressions.

The two together actually make the declarative style of typing rules
unworkable!



Java conditionals

t1 ∈ bool t2 ∈ T2 t3 ∈ T3

t1 ? t2 : t3 ∈ ?

Actual Java rule (algorithmic):

t1 ∈ bool t2 ∈ T2 t3 ∈ T3

t1 ? t2 : t3 ∈ min(T2, T3)



Java conditionals

t1 ∈ bool t2 ∈ T2 t3 ∈ T3

t1 ? t2 : t3 ∈ ?

Actual Java rule (algorithmic):

t1 ∈ bool t2 ∈ T2 t3 ∈ T3

t1 ? t2 : t3 ∈ min(T2, T3)



More standard (declarative) rule:

t1 ∈ bool t2 ∈ T t3 ∈ T

t1 ? t2 : t3 ∈ T

Algorithmic version:

t1 ∈ bool t2 ∈ T2 t3 ∈ T3

t1 ? t2 : t3 ∈ T2 ∨ T3

Requires joins!



More standard (declarative) rule:

t1 ∈ bool t2 ∈ T t3 ∈ T

t1 ? t2 : t3 ∈ T

Algorithmic version:

t1 ∈ bool t2 ∈ T2 t3 ∈ T3

t1 ? t2 : t3 ∈ T2 ∨ T3

Requires joins!



Java has no joins

But, in full Java (with interfaces), there are types that have no
join!

E.g.:

interface I {...}
interface J {...}
interface K extends I,J {...}
interface L extends I,J {...}

K and L have no join (least upper bound) — both I and J are
common upper bounds, but neither of these is less than the other.

So: algorithmic typing rules are really our only option.



FJ Typing rules

fields(C) = D f
Γ ` t : C C <: D

Γ ` new C(t) : C
(T-New)



Typing rules (methods, classes)

x : C, this : C ` t0 : E0 E0 <: C0

CT(C) = class C extends D {...}
override(m, D, C→C0)

C0 m (C x) {return t0;} OK in C

K = C(D g, C f) {super(g); this.f = f;}
fields(D) = D g M OK in C

class C extends D {C f; K M} OK



Properties



Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)new Object()



Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)new Object()



Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)new Object()



Formalizing Progress

Solution: Weaken the statement of the progress theorem to

A well-typed FJ term is either a value or can reduce one
step or is stuck at a failing cast.

Formalizing this takes a little more work...



Evaluation Contexts

E ::= evaluation contexts
[ ] hole
E.f field access
E.m(t) method invocation (receiver)
v.m(v,E,t) method invocation (arg)
new C(v,E,t) object creation (arg)
(C)E cast

Evaluation contexts capture the notion of the “next subterm to be
reduced,” in the sense that, if t −→ t′, then we can express t and
t′ as t = E [r] and t′ = E [r′] for a unique E , r, and r′, with
r −→ r′ by one of the computation rules E-ProjNew,
E-InvkNew, or E-CastNew.



Progress

Theorem [Progress]: Suppose t is a closed, well-typed normal
form. Then either (1) t is a value, or (2) t −→ t′ for some t′, or
(3) for some evaluation context E , we can express t as
t = E [(C)(new D(v))], with D 6<: C.



Preservation

Theorem [Preservation]: If Γ ` t : C and t −→ t′, then Γ ` t′ : C′

for some C′ <: C.

Proof: Straightforward induction.

???



Preservation

Theorem [Preservation]: If Γ ` t : C and t −→ t′, then Γ ` t′ : C′

for some C′ <: C.

Proof: Straightforward induction. ???



Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() −→ (A)new B()



Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() −→ (A)new B()



Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() −→ (A)new B()



Solution: “Stupid Cast” typing rule

Add another typing rule, marked “stupid” to indicate that an
implementation should generate a warning if this rule is used.

Γ ` t0 : D C 6<: D D 6<: C
stupid warning

Γ ` (C)t0 : C
(T-SCast)

This is an example of a modeling technicality; not very interesting
or deep, but we have to get it right if we’re going to claim that the
model is an accurate representation of (this fragment of) Java.



Solution: “Stupid Cast” typing rule

Add another typing rule, marked “stupid” to indicate that an
implementation should generate a warning if this rule is used.

Γ ` t0 : D C 6<: D D 6<: C
stupid warning

Γ ` (C)t0 : C
(T-SCast)

This is an example of a modeling technicality; not very interesting
or deep, but we have to get it right if we’re going to claim that the
model is an accurate representation of (this fragment of) Java.



Correspondence with Java

Let’s try to state precisely what we mean by “FJ corresponds to
Java”:

Claim:

1. Every syntactically well-formed FJ program is also a
syntactically well-formed Java program.

2. A syntactically well-formed FJ program is typable in FJ
(without using the T-SCast rule.) iff it is typable in Java.

3. A well-typed FJ program behaves the same in FJ as in Java.
(E.g., evaluating it in FJ diverges iff compiling and running it
in Java diverges.)

Of course, without a formalization of full Java, we cannot prove
this claim. But it’s still very useful to say precisely what we are
trying to accomplish—e.g., it provides a rigorous way of judging
counterexamples. (Cf. “conservative extension” between logics.)



Alternative approaches to casting

I Loosen preservation theorem

I Use big-step semantics


	Recap
	Where we are...
	Modeling Java
	Formalizing FJ
	FJ Syntax
	Subtyping
	Evaluation
	Typing
	Properties

