
CIS 500
Software Foundations

Fall 2006

December 4

Administrivia

Homework 11

Homework 11 is currently due on Friday.

Should we make it due next Monday instead?

More on Evaluation Contexts

Progress for FJ

Theorem [Progress]: Suppose t is a closed, well-typed normal
form. Then either

1. t is a value, or

2. t −→ t′ for some t′, or

3. for some evaluation context E , we can express t as

t = E [(C)(new D(v))]

with D 6<: C.

Evaluation Contexts

E ::= evaluation contexts
[] hole
E.f field access
E.m(t) method invocation (rcv)
v.m(v,E,t) method invocation (arg)
new C(v,E,t) object creation (arg)
(C)E cast

E.g.,
[].fst
[].fst.snd
new C(new D(), [].fst.snd, new E())

Evaluation Contexts

E [t] denotes “the term obtained by filling the hole in E with t.”

E.g., if E = (A)[], then

E [(new Pair(new A(), new B())).fst]
=

(A)((new Pair(new A(), new B())).fst)

Evaluation Contexts

Evaluation contexts capture the notion of the “next subterm to be
reduced”:

I By ordinary evaluation relation:

(A)((new Pair(new A(), new B())).fst) −→ (A)(new A())

by E-Cast with subderivation E-ProjNew.

I By evaluation contexts:

E = (A)[]
r = (new Pair(new A(), new B())).fst
r′ = new A()
r −→ r′ by E-ProjNew
E [r] = (A)((new Pair(new A(), new B())).fst)
E [r′] = (A)(new A())

Precisely...

Claim 1: If r −→ r′ by one of the computation rules
E-ProjNew, E-InvkNew, or E-CastNew and E is an
arbitrary evaluation context, then E [r] −→ E [r′] by the ordinary
evaluation relation.

Claim 2: If t −→ t′ by the ordinary evaluation relation, then there
are unique E , r, and r′ such that

1. t = E [r],

2. t′ = E [r′], and

3. r −→ r′ by one of the computation rules E-ProjNew,
E-InvkNew, or E-CastNew.

Proofs: Homework 11.

The Curry-Howard
Correspondence

Intro vs. elim forms

An introduction form for a given type gives us a way of
constructing elements of this type.

An elimination form for a type gives us a way of using elements of
this type.

The Curry-Howard Correspondence

In constructive logics, a proof of P must provide evidence for P.

I “law of the excluded middle”

P ∨ ¬P

not recognized.

I A proof of P ∧ Q is a pair of evidence for P and evidence for
Q.

I A proof of P ⊃ Q is a procedure for transforming evidence for
P into evidence for Q.

Propositions as Types

Logic Programming languages

propositions types
proposition P ⊃ Q type P→Q
proposition P ∧ Q type P× Q
proof of proposition P term t of type P
proposition P is provable type P is inhabited (by some term)
???

proof simplification

evaluation

(a.k.a. “cut elimination”)

Propositions as Types

Logic Programming languages

propositions types
proposition P ⊃ Q type P→Q
proposition P ∧ Q type P× Q
proof of proposition P term t of type P
proposition P is provable type P is inhabited (by some term)
proof simplification evaluation

(a.k.a. “cut elimination”)

Universal Types

Motivation

In the simply typed lambda-calculus, we often have to write several
versions of the same code, differing only in type annotations.

doubleNat = λf:Nat→Nat. λx:Nat. f (f x)
doubleRcd = λf:{l:Bool}→{l:Bool}. λx:{l:Bool}. f (f x)

doubleFun = λf:(Nat→Nat)→(Nat→Nat). λx:Nat→Nat. f (f x)

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once

... and parameterize it
on the details that vary from one instance to another.

Here, the details that vary are the types!

Motivation

In the simply typed lambda-calculus, we often have to write several
versions of the same code, differing only in type annotations.

doubleNat = λf:Nat→Nat. λx:Nat. f (f x)
doubleRcd = λf:{l:Bool}→{l:Bool}. λx:{l:Bool}. f (f x)

doubleFun = λf:(Nat→Nat)→(Nat→Nat). λx:Nat→Nat. f (f x)

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once... and parameterize it
on the details that vary from one instance to another.

Here, the details that vary are the types!

Motivation

In the simply typed lambda-calculus, we often have to write several
versions of the same code, differing only in type annotations.

doubleNat = λf:Nat→Nat. λx:Nat. f (f x)
doubleRcd = λf:{l:Bool}→{l:Bool}. λx:{l:Bool}. f (f x)

doubleFun = λf:(Nat→Nat)→(Nat→Nat). λx:Nat→Nat. f (f x)

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once... and parameterize it
on the details that vary from one instance to another.

Here, the details that vary are the types!

Idea

We’d like to be able to take a piece of code and “abstract out”
some type annotations.

We’ve already got a mechanism for doing this with terms:
λ-abstraction. So let’s just re-use the notation.

Abstraction:
double = λX. λf:X→X. λx:X. f (f x)

Application:
double [Nat]
double [Bool]

Computation:
double [Nat] −→ λf:Nat→Nat. λx:Nat. f (f x)

(N.b.: Type application is commonly written t [T], though t T
would be more consistent.)

Idea

What is the type of a term like

λX. λf:X→X. λx:X. f (f x) ?

This term is a function that, when applied to a type X, yields a
term of type (X→X)→X→X.

I.e., for all types X, it yields a result of type (X→X)→X→X.

We’ll write it like this: ∀X. (X→X)→X→X

Idea

What is the type of a term like

λX. λf:X→X. λx:X. f (f x) ?

This term is a function that, when applied to a type X, yields a
term of type (X→X)→X→X.

I.e., for all types X, it yields a result of type (X→X)→X→X.

We’ll write it like this: ∀X. (X→X)→X→X

Idea

What is the type of a term like

λX. λf:X→X. λx:X. f (f x) ?

This term is a function that, when applied to a type X, yields a
term of type (X→X)→X→X.

I.e., for all types X, it yields a result of type (X→X)→X→X.

We’ll write it like this: ∀X. (X→X)→X→X

System F

System F (aka “the polymorphic lambda-calculus”) formalizes this
idea by extending the simply typed lambda-calculus with type
abstraction and type application.

t ::= terms
x variable
λx:T.t abstraction
t t application
λX.t type abstraction
t [T] type application

v ::= values
λx:T.t abstraction value
λX.t type abstraction value

System F

System F (aka “the polymorphic lambda-calculus”) formalizes this
idea by extending the simply typed lambda-calculus with type
abstraction and type application.

t ::= terms
x variable
λx:T.t abstraction
t t application
λX.t type abstraction
t [T] type application

v ::= values
λx:T.t abstraction value
λX.t type abstraction value

System F: new evaluation rules

t1 −→ t′
1

t1 [T2] −→ t′
1 [T2]

(E-TApp)

(λX.t12) [T2] −→ [X 7→ T2]t12 (E-TappTabs)

System F: Types

To talk about the types of “terms abstracted on types,” we need
to introduce a new form of types:

T ::= types
X type variable
T→T type of functions
∀X.T universal type

System F: Typing Rules

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ, x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

Γ, X ` t2 : T2

Γ ` λX.t2 : ∀X.T2
(T-TAbs)

Γ ` t1 : ∀X.T12

Γ ` t1 [T2] : [X 7→ T2]T12
(T-TApp)

History

Interestingly, System F was invented independently and almost
simultaneously by a computer scientist (John Reynolds) and a
logician (Jean-Yves Girard).

Their results look very different at first sight — one is presented as
a tiny programming language, the other as a variety of
second-order logic.

The similarity (indeed, isomorphism!) between them is an example
of the Curry-Howard Correspondence.

Examples

Lists

cons : ∀X. X → List X → List X
head : ∀X. List X → X
tail : ∀X. List X → List X
nil : ∀X. List X
isnil : ∀X. List X → Bool

map =
λX. λY.

λf: X→Y.
(fix (λm: (List X) → (List Y).

λl: List X.
if isnil [X] l
then nil [Y]
else cons [Y] (f (head [X] l))

(m (tail [X] l))));

l = cons [Nat] 4 (cons [Nat] 3 (cons [Nat] 2 (nil [Nat])));

head [Nat] (map [Nat] [Nat] (λx:Nat. succ x) l);

Church Booleans

CBool = ∀X.X→X→X;

tru = λX. λt:X. λf:X. t;
fls = λX. λt:X. λf:X. f;

not = λb:CBool. λX. λt:X. λf:X. b [X] f t;

Church Numerals

CNat = ∀X. (X→X) → X → X;

c0 = λX. λs:X→X. λz:X. z;
c1 = λX. λs:X→X. λz:X. s z;
c2 = λX. λs:X→X. λz:X. s (s z);

csucc = λn:CNat. λX. λs:X→X. λz:X. s (n [X] s z);

cplus = λm:CNat. λn:CNat. m [CNat] csucc n;

Properties of System F

Preservation and Progress: unchanged.

(Proofs similar to what we’ve seen.)

Strong normalization: every well-typed program halts. (Proof is
challenging!)

Type reconstruction: undecidable (major open problem from 1972
until 1994, when Joe Wells solved it).

Parametricity

Observation: Polymorphic functions cannot do very much with
their arguments.

I The type ∀X. X→X→X has exactly two members (up to
observational equivalence).

I ∀X. X→X has one.

I etc.

The concept of parametricity gives rise to some useful “free
theorems...”

Existential Types

Motivation

If universal quantifiers are useful in programming, then what about
existential quantifiers?

Rough intuition:

Terms with universal types are functions from types to terms.

Terms with existential types are pairs of a type and a term.

Motivation

If universal quantifiers are useful in programming, then what about
existential quantifiers?

Rough intuition:

Terms with universal types are functions from types to terms.

Terms with existential types are pairs of a type and a term.

Concrete Intuition

Existential types describe simple modules:

An existentially typed value is introduced by pairing a type
with a term, written {*S,t}. (The star avoids syntactic
confusion with ordinary pairs.)

A value {*S,t} of type {∃X,T} is a module with one
(hidden) type component and one term component.

Example: p = {*Nat, {a=5, f=λx:Nat. succ(x)}}
has type {∃X, {a:X, f:X→X}}

The type component of p is Nat, and the value component is a
record containing a field a of type X and a field f of type X→X, for
some X (namely Nat).

The same package p = {*Nat, {a=5, f=λx:Nat. succ(x)}}
also has type {∃X, {a:X, f:X→Nat}},
since its right-hand component is a record with fields a and f of
type X and X→Nat, for some X (namely Nat).

This example shows that there is no automatic (“best”) way to
guess the type of an existential package. The programmer has to
say what is intended.
We re-use the “ascription” notation for this:

p = {*Nat, {a=5, f=λx:Nat. succ(x)}}
as {∃X, {a:X, f:X→X}}

p1 = {*Nat, {a=5, f=λx:Nat. succ(x)}}
as {∃X, {a:X, f:X→Nat}}

This gives us the “introduction rule” for existentials:

Γ ` t2 : [X 7→ U]T2

Γ ` {*U,t2} as {∃X,T2} : {∃X,T2}
(T-Pack)

Different representations...

Note that this rule permits packages with different hidden types to
inhabit the same existential type.

Example: p2 = {*Nat, 0} as {∃X,X}
p3 = {*Bool, true} as {∃X,X}

More useful example:
p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→Nat}}

p5 = {*Bool, {a=true, f=λx:Bool. 0}} as {∃X, {a:X, f:X→Nat}}

Different representations...

Note that this rule permits packages with different hidden types to
inhabit the same existential type.

Example: p2 = {*Nat, 0} as {∃X,X}
p3 = {*Bool, true} as {∃X,X}

More useful example:
p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→Nat}}

p5 = {*Bool, {a=true, f=λx:Bool. 0}} as {∃X, {a:X, f:X→Nat}}

Exercise...

Here are three more variations on the same theme:
p6 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→X}}
p7 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:Nat→X}}
p8 = {*Nat, {a=0, f=λx:Nat. succ(x)}}

as {∃X, {a:Nat, f:Nat→Nat}}

In what ways are these less useful than p4 and p5?

p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→Nat}}

p5 = {*Bool, {a=true, f=λx:Bool. 0}} as {∃X, {a:X, f:X→Nat}}

The elimination form for existentials

Intuition: If an existential package is like a module, then
eliminating (using) such a package should correspond to “open” or
“import.”

I.e., we should be able to use the components of the module, but
the identity of the type component should be “held abstract.”

Γ ` t1 : {∃X,T12} Γ, X, x:T12 ` t2 : T2

Γ ` let {X,x}=t1 in t2 : T2
(T-Unpack)

Example: if
p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}}

as {∃X,{a:X,f:X→Nat}}
then
let {X,x} = p4 in (x.f x.a)
has type Nat (and evaluates to 1).

Abstraction

However, if we try to use the a component of p4 as a number,
typechecking fails:

p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}}
as {∃X,{a:X,f:X→Nat}}

let {X,x} = p4 in (succ x.a)
=⇒ Error: argument of succ is not a number

This failure makes good sense, since we saw that another package
with the same existential type as p4 might use Bool or anything
else as its representation type.

Γ ` t1 : {∃X,T12} Γ, X, x:T12 ` t2 : T2

Γ ` let {X,x}=t1 in t2 : T2
(T-Unpack)

Computation

The computation rule for existentials is also straightforward:

let {X,x}=({*T11,v12} as T1) in t2

−→ [X 7→ T11][x 7→ v12]t2
(E-UnpackPack)

Example: Abstract Data Types

counterADT =
{*Nat,
{new = 1,
get = λi:Nat. i,
inc = λi:Nat. succ(i)}}

as {∃Counter,
{new: Counter,
get: Counter→Nat,
inc: Counter→Counter}};

let {Counter,counter} = counterADT in
counter.get (counter.inc counter.new);

Representation independence

We can substitute another implementation of counters without
affecting the code that uses counters:

counterADT =
{*{x:Nat},
{new = {x=1},
get = λi:{x:Nat}. i.x,
inc = λi:{x:Nat}. {x=succ(i.x)}}}

as {∃Counter,
{new: Counter, get: Counter→Nat, inc: Counter→Counter}};

Cascaded ADTs

We can use the counter ADT to define new ADTs that use
counters in their internal representations:

let {Counter,counter} = counterADT in

let {FlipFlop,flipflop} =
{*Counter,
{new = counter.new,
read = λc:Counter. iseven (counter.get c),
toggle = λc:Counter. counter.inc c,
reset = λc:Counter. counter.new}}

as {∃FlipFlop,
{new: FlipFlop, read: FlipFlop→Bool,
toggle: FlipFlop→FlipFlop, reset: FlipFlop→FlipFlop}} in

flipflop.read (flipflop.toggle (flipflop.toggle flipflop.new));

Existential Objects

Counter = {∃X, {state:X, methods: {get:X→Nat, inc:X→X}}};
c = {*Nat,

{state = 5,
methods = {get = λx:Nat. x,

inc = λx:Nat. succ(x)}}}
as Counter;

let {X,body} = c in body.methods.get(body.state);

Existential objects: invoking methods

More generally, we can define a little function that “sends the get
message” to any counter:

sendget = λc:Counter.
let {X,body} = c in
body.methods.get(body.state);

Invoking the inc method of a counter object is a little more
complicated. If we simply do the same as for get, the typechecker
complains

let {X,body} = c in body.methods.inc(body.state);
=⇒ Error: Scoping error!

because the type variable X appears free in the type of the body of
the let.

Indeed, what we’ve written doesn’t make intuitive sense either,
since the result of the inc method is a bare internal state, not an
object.

To satisfy both the typechecker and our informal understanding of
what invoking inc should do, we must take this fresh internal state
and repackage it as a counter object, using the same record of
methods and the same internal state type as in the original object:

c1 = let {X,body} = c in
{*X,
{state = body.methods.inc(body.state),
methods = body.methods}}

as Counter;

More generally, to “send the inc message” to a counter, we can
write:

sendinc = λc:Counter.
let {X,body} = c in

{*X,
{state = body.methods.inc(body.state),
methods = body.methods}}

as Counter;

Objects vs. ADTs

The examples of ADTs and objects that we have seen in the past
few slides offer a revealing way to think about the differences
between “classical ADTs” and objects.

I Both can be represented using existentials

I With ADTs, each existential package is opened as early as
possible (at creation time)

I With objects, the existential package is opened as late as
possible (at method invocation time)

These differences in style give rise to the well-known pragmatic
differences between ADTs and objects:

I ADTs support binary operations

I objects support multiple representations

A full-blown existential object model

What we’ve done so far is to give an account of “object-style”
encapsulation in terms of existential types.

To give a full model of all the “core OO features” we have
discussed before, some significant work is required. In particular,
we must add:

I subtyping (and “bounded quantification”)

I type operators (“higher-order subtyping”)

