CIS 500 — Software Foundations

Final Exam

December 20, 2006

Name or WPE-I 1d:

| Score

O[O0 | N || U | =W N |-

—
o

—_
—_

Total |

Instructions

This is a closed-book exam.
You have 120 minutes to answer all of the questions. The entire exam is worth 120 points.

Questions vary significantly in difficulty, and the point value of a given question is not always exactly
proportional to its difficulty. Do not spend too much time on any one question.

Partial credit will be given. All correct answers are short. The back side of each page and the companion
handout may be used as scratch paper.

Good luck!

Inductively Defined Relations

Define the syntactic categories of blobs (written =) and counts (written y) as follows:

z =
b
]
T-xT
y == 0
+y
)

That is, a blob is a tree whose leaves are labeled f, fj, or b; a count is a sequence of +s and —s ending in 0.
Now define the relation “accumulating x onto y yields ',” written © ~ y > %/, as the least three-place
relation closed under the following rules:

ftny > 4y (SHARP)
by > —y (FLAT)
by >y (NATURAL)
x1 Ny >y’ za vy >y
1 Y Y 2 Y Y (Dor)

T T2 Y >y

To -1 NY D y'

- (Swap)
T1-ToNNYy >y

Notice that the result of accumulating = onto y always has y itself as a suffix, and that it additionally includes
one + for every f in z and one — for every b in x. The middle component of the relation, y, is analogous to
the “accumulator parameter” sometimes used by tail-recursive OCaml functions. The SWAP rule introduces
some flexibility in the order of +s and —s in %/, relative to the positions of fis and bs in x.

1. (6 points) Are the following statements derivable? (Write YES or NO for each.)

(@) - (1-0) ~0 > +0

() g- (D) ~0 > +—+40

() $-0)-b-5) ~+0 > ++ -0

2. (20 points) Write a careful inductive proof of the following fact. Make sure to explictly mention every
step in the proof (use of an assumption, use of the induction hypothesis, use of one of the inference

rules, etc.).

Fact: For every x there is some y’ such that z ~ 0 > 3/

Untyped Lambda-Calculus

The following problem concerns the untyped lambda-calculus. This system is summarized on page 1
of the companion handout.

3. (6 points) Recall the definitions of observational and behavioral equivalence from the lecture notes:

e Two terms s and t are observationally equivalent iff either both are normalizable (i.e., they reach
a normal form after a finite number of evaluation steps) or both are divergent.

e Terms s and t are behaviorally equivalent iff, for every finite sequence of values vy, vo, ..., Vv,
(including the empty sequence), the applications

S VL Vo ... Vp

and
t vy ve ... v
are observationally equivalent.

For each of the following pairs of terms, write YES if the terms are behaviorally equivalent and NO if
they are not.

(a) Ax. Ay. x (Az. 2) y)
and (Ax. Ay. (Az. z) x y)

(b) (As. Az. s (s 2))
and (An. As. Az. s (n s z)) (As. A\z. s z)

(c) (Ax. x x) (Ax. x %)
and Z (Ag. Ah. h) (\z. z)

where Z = (AMf. Ay. (Ax. £ (Ay. x x y)) (Ax. £ (Ay. x x y)) y), as in lecture notes

Subtyping

The following problems concern the simply typed lambda-calculus with subtyping (and records, vari-
ants, and references). This system is summarized on page 2 of the companion handout.

4. (10 points) Circle T or F for each of the following statements.

(a)

There is an infinite descending chain of distinct types in the subtype relation—that is, an infinite
sequence of types Sp, S1, etc., such that all the S;’s are different and each S;1 is a subtype of S;.

T F

There is an infinite ascending chain of distinct types in the subtype relation—that is, an infinite
sequence of types Sg, S1, etc., such that all the S;’s are different and each S;11 is a supertype of
S;.

T F

There exists a type that is a subtype of every other type.
T F

There exists a record type that is a subtype of every other record type.
T F

There exists a variant type that is a subtype of every other variant type.

T F

5. (15 points) The standard subtyping rule for references is:

T <0 8 $1<i Ty

(S-REF)
Ref Sy < Ref T
Suppose we drop the first premise so that Ref becomes a covariant type constructor:
S1<:T
! ! (S-REF-NEW)

Ref S; <t Ref T

Indicate whether each of the following properties remains true (write “TRUE”) or becomes false (write
“FALSE”), and briefly explain why.

(a) Progress: Suppose t is a closed, well-typed term (that is,)X -t : T for some T and ¥). Then
either t is a value or else, for any store p such that @|Z = p, there is some term t’ and store p’
with t|u — t/|p'.

(b) Preservation: If
X+t :T
INDIN !
tlp — [
then, for some ¥/ D X,
DS bt : T
DA

(¢) Existence of joins: For every pair of types S and T there is some type J such that S and T are
both subtypes of J and such that, for any other type U, if S and T are both subtypes of U, then J
is a subtype of U.

Object Encodings in Lambda-Calculus

The questions in this section are based the following small class hierarchy encoded in lambda-calculus.
(Note that this encoding is in the simpler style of section 18.11 of TAPL; it does not incorporate the
refinements for improved efficiency discussed at the very end of the chapter, in 18.12.)

/* A couple of miscellaneous helper functions -- "not" on booleans... */
not = Ab:Bool. if b then false else true;
/* and a comparison function for numbers: */
leq =
fix (Af:Nat—Nat—Bool.
Am:Nat. An:Nat.
if iszero m then true
else if iszero n then false
else f (pred m) (pred n));

/* The interface type of "pair objects": x/
Pair = {setl:Nat—Unit, set2:Nat—Unit, lessoreq:Unit—Bool, greater:Unit—Bool};

/* The internal representation of "pair objects": */
PairRep = {x1: Ref Nat, x2:Ref Nat};

/* A class of "abstract pair objects." Note that the lessoreq and
greater methods call each other recursively. */
absPairClass =
Ar:PairRep.
Aself: Unit—Pair.
A_:Unit.

{setl = Ai:Nat. r.xl:=i,
set2 = A\i:Nat. r.x2:=i,
lessoreq = A_:Unit. not ((self unit).greater unit),
greater = A_:Unit. not ((self unit).lessoreq unit)l};

/* A function that creates a new abstract pair object: */
newAbsPair =
A_:Unit. let r = {xl=ref 0, x2=ref 0} in
fix (absPairClass r) unit;

/* A subclass that overrides the lessoreq method: */
pairClass =
Ar:PairRep.
Aself: Unit—Pair.
A_:Unit.
let super = absPairClass r self unit in
{setl = super.setl,
set2 = super.set2,
lessoreq = A_:Unit. leq (!(r.x1)) (!(r.x2)),
greater = super.greater};

/* A function that creates a new pair object: */
newPair =
A_:Unit. let r = {xl=ref 0, x2=ref 0} in
fix (pairClass r) unit;

6. (6 points) Circle T or F for each of the following statements.

(a) The expression newAbsPair unit diverges.

T F

(b) The expression (newAbsPair unit).setl 5 diverges.

T F

(c¢) The expression (newAbsPair unit).greater unit diverges.

T F

(d) The expression newPair unit diverges.

T F

(e) The expression (newPair unit).setl 5 yields unit.

T F

(f) The expression (newPair unit).greater unit yields false.

T F

7. (16 points) Write another class myPairClass that uses pairClass as its superclass and that adds
one more method, called setSmaller, that calls the lessoreq method to determine which field is
smaller and then calls either the set1 or the set2 method to update the value of this field. (Your new
method should not use :=, !, or numeric comparison directly.) You do not need to write the newMyPair

function—just the class.

MyPair = {setl:Nat—Unit, set2:Nat—Unit,
lessoreq:Unit—Bool, greater:Unit—Bool,
setSmaller:Nat—Unit};

myPairClass =

10

Featherweight Java with Exceptions

The problems in this section deal with an extension of FJ with exceptions. The definition of the original
FJ is given for reference on page 6 of the companion handout.

The full syntax of terms in the extended language, including two new syntactic forms for raising and
handling errors, is:

t =
X variable
t.f field access
t.m(t) method invocation
new C(t) object creation
©) t cast
error run-time error
try t with t trap errors

(Note that we are adding the simplest form of exceptions here—exceptions are just the term error,
with no additional value carried along.)

The typing rules for error and try...with... are standard:

'+ error : C (T-ERROR)

'ty :C 'ty : C

(T-TrY)
I'Ftry t; with to : C

Having added exceptions to the system, we no longer need to define failing casts as stuck terms (as in
original FJ); instead, we can make a failing cast raise an exception:

C« D

(D) (new C(¥V)) — error

(E-BADCAST)
The other new evaluation rules follow the same pattern as in A_, with exceptions: error “percolates
up” through the other term constructors, aborting their evaluation as it goes. For example:
error.m(d) — error (E-INVKERROR)
(new C(¥)).m(uy...u;_q,error,t;41...t,) — error (E-INVKERRORARG)

try error with to — to (E-TRYERROR)

11

8. (10 points) What other evaluation rules do we need to add to complete the definition?

12

9. (6 points) State an appropriate progress theorem for the extended language. (Do not prove it.)

13

10. (18 points) The statement of the preservation theorem for F.J with exceptions is exactly the same as
for ordinary FJ:

Theorem: If 't : Cand t — t/, then ' -t/ : C’ for some C’' <: C.

Fill in the blanks in the following proof of this theorem. Make sure to explictly mention every step
required in the proof (use of an assumption, use of the induction hypothesis, use of a typing or evaluation
rule, etc.).

Proof: By induction on a derivation of t — t’, with a case analysis on the final rule. (Just three of
the cases are given here; we are eliding several others.)

Case E-BADCAST: t = (D) (new B(¥)) t/ = error B« D

Case E-TRYERROR: t = try error with to t/ = tq

Case E-CASTNEW: t = (D) (new Co(¥)) Co<:D t’ = new Cy(¥)

14

11.

Polymorphism

The following problem concerns the polymorphic lambda-calculus (with a primitive fix construct and
booleans). This system is summarized on page 9 of the companion handout.

(7 points) Suppose (following the example in Chapter 23 of TAPL and in the lecture notes) that our
language is also equipped with a type constructor List and the following term constructors for the
usual list manipulation primitives.

nil : V X. List X

cons : V X. X — List X — List X
isnil : V X. List X — Bool

head : V X. List X — X

tail : V X. List X — List X

Complete the following definition of a mapfilter function on lists by filling in the missing type param-
eters (mapfilter is an “all in one” combination of map and filter—it filters a list using the boolean
function test and applies £ to each element of the resulting list). All necessary type parameters are
indicated with blanks, which you are to fill in.

mapfilter = AX. AY. Atest:X — Bool. Af:X — Y

(fix (Arec:List X — List Y.

Axs:List X.

if isnil [—_] xs then

nil [——]

else if test (head [———_] xs) then

cons [— 1 (f (head [——] xs)) (rec (tail [—] xs))

else

rec (tail [—] xs)))

15

Companion handout

Full definitions of the systems
used in the exam

Ax.t

FEvaluation

Untyped Lambda-calculus

vy to — vy t/2

(Ax.t12) Vo — [x — Va]tio

terms
variable
abstraction
application

values
abstraction value

(E-AppP1)

(E-ApPP2)

(E-APPARBS)

Simply-typed lambda calculus with subtyping
(and records and variants)

Syntaz
t o= terms
X variable
Ax:T.t abstraction
tt application
{1,=t; """} record
t.1 projection
unit constant unit
ref t reference creation
't dereference
t:=t assignment
l store location
<l=t> (no as) tagging
case t of <1;,=x;>=t; ‘¢ case
v o= values
Ax:T.t abstraction value
{1;=v; €} record value
unit constant unit
l store location
T == types
{1;:T; "} type of records
Top mazimum type
T—T type of functions
Unit unit type
Ref T type of reference cells
<1;:T; €m> type of variants
I o= type environments
] empty type env.
noon= stores
0 empty store
wl=v location binding
Y o= store typings
) empty store typing
0T location typing
Evaluation
li !/
tilp — thlp : (E-App1)

t1 tolp — t] talp

ta|p — ol

E-Aprp2
V1 tolp — vy to|u ()

2

(Ax:T11.t12) Valp — [x — vatia|p (E-APPABS)

{1,=v; €*-"}. 1],|M — |M (E—PROJRCD)

L ¢ dom(p)
ref vi|p — (1, I — vy1)

(E-REFV)

tilp — ty [y

— (E-REF)
ref ti|p — ref ti|u
) =

) =v_ (E-DEREFLOC)

Hip — vip

t tl !/
i — 1|,'u (E-DEREF)

Moy |p — e

l:=va|u — unit|[l — va]u (E-ASSIGN)

t1lp — |

; (E-AssIGN1)
t1:=to|u — thi=te|y

talp — ta|p

— T (E-ASSIGN2)
1:=ta|p — vi=th|p

case (<1;=v;> as T) of <1;=x;>=t; L)y —s [Xj *_’Vj}tjm (E-CASEVARIANT)

tolp — o1

' E-CASE
case tO of <1Z=X'L>:t7{ i€l..n ()

u— case tf, of <L;=x;>=t; "y

tilp — tily
<l;=t;> as T|u — <1;=t}> as Ty’

Typing I[SFt:T

foreach:¢ TI'kFt; : T;

(E-VARIANT)

T-RcD
'+t : {1i:Ti i€1.n}
! (T-ProJ)
T "tl.lj : Tj
x:Tel
(T-VAR)
MNE¥kFx:T
I'x:Ty|XFte: T
x:Ti| 22 (T-ABS)
F|E}_)\XZT1.t2 :T1—Ts
I'YXkFt : T T IXkFty : T
| 1 11—~ 112 \ 2 11 (T-App)

F|E Fty tg @ T2

3

'kt :8S ST
't :T

|2 F unit : Unit

[|XF1:Ref Ty

F|Z F t1 1 Ty
T/ Fref t; : Ref Ty

F|Z - t1 : Ref Ty
TS F tor : T

[[XF % : Ref Ty ISty Ty
DX F ty:=ty : Unit

't : Ty
I'E<1i=t1> : <11:T1>

'ty : <1;:T; € m>
foreacht I, x;:T;Ft;:T
'+ case tg of <1;=x;>=t; " : T

Subtyping
sS<:8

S<: U U< T
ST

S <: Top

T1 < Sl SQ <: T2
S1—89 <: T1—Ts

{1,:T; € P} <0 {1;:T; <}

foreachi S; <! T;
{liisi i€1..n} <: {1i:Ti iEI..n}

{k;:8; 7¢'~"} is a permutation of {1;:T; ‘<" "}

{k‘7 :S] jEl.,n} <: {12 :T’L iEl.,n}

Ty < S1 S <: T
Ref S; <: Ref T;

<1;:T; i€y L <1;:T; i€l.ntky

4

(T-SuB)

(T-UnNIT)

(T-Loc)

(T-REF)

(T-DEREF)

(T-ASSIGN)

(T-VARIANT)

(T-CaSE)

S<: T

(S-REFL)

(S-TRANS)

(S-Top)

(S-ARROW)

(S-RcpWIDTH)

(S-RCDDEPTH)

(S-RCDPERM)

(S-REF)

(S-VARIANTWIDTH)

for each i S; <t T;
<1i:si LSNPS <1;:T; i€l.ny

(S-VARIANTDEPTH)

<k;:S; 7€'"> is a permutation of <1;:T; "€/~ ">

, - S-VARIANTPERM
<kJ:SJ]el..n> <: <11,:T'L zel..n> (R)

Syntax

Featherweight Java

class C extends C {C f; K M}

K =

C(C f) {super(f); this.f=f;}
M p—

C m(C X) {return t;}
t =

x

t.f

t.m(t)

new C(%t)

©) t
v =

new C(V)
Subtyping

Field lookup

c<:cC

c<:D DL E
C<L:E

CT(C) = class C extends D {...}
cC<:D

fields(Object) = o

CT(C) = class C extends D {C f; K M}

Method type lookup

fields(D) =D g
fields(C) =D g, C

CT(C) = class C extends D {C K M}
S

£;
Bm (B X) {return t;} €M

mtype(m, C) = B—B

CT(C) = class C extends D {C f; K M}
m is not defined in M

mtype(m, C) = mtype(m,D)

6

class declarations

constructor declarations

method declarations

terms
variable
field access
method invocation
object creation
cast

values
object creation

C<:D

’ mtype(m, C) = C—C ‘

Method body lookup

CT(C) = class C extends D {C f; K M}
Bm (B X) {return t;} €M
mbody(m,C) = (X, t)

CT(C) = class C extends D {C f; K M}
m is not defined in M

mbody(m, C) = mbody(m, D)

Valid method overriding

mtype(m,D) = D—Dy implies C =D and Cy = Dy

override(m, D, C—Cy)

FEvaluation

fields(C) =C £

(new C(¥)) .f; — v;

mbOdy(m7 C) = (ia tO)

’ mbody(m, C) = (X, t) ‘

’ override(m, D, C—Cy) ‘

(new C(¥)).m(W) — [X+— T, this — new C(W [ty

c<:D
(D) (new C(¥V)) — new C(V)

t0—>t6
to.f — t(.f

to — t;
to.m(T) — t{.m(¥)

t; — t]

vo.m(V, t;, t)
—>v0.m(V, t;, t)

t; — t
new C(¥, t;, t)
— mnew C(¥, t}, t)

to — t;
(©)ty — (Ot

Term typing

x:Cel
I'Fx:C

(E-PROJNEW)
(E-INVKNEW)
(E-CASTNEW)
(E-FIELD)
(E-INVK-RECV)

(E-INVK-ARG)

(E-NEW-ARQG)

(E-CasT)

'kt :C

(T-VAR)

'ty :Co ﬁ@ldS(Co) =Cf
I'tg.f; 1 C;

'ty : Co
mtype(m, Cy) = D—C

't:C C<:D
T'Fty.m(%) : C

fields(C) =D £
'Ft:C C <:
I'Fnew C(t) : C

(=]l

'ty :D D <: C
'@ty :C

I'Fty:D C<:D C#D
'@ty :C

I'Fty:D C< D D« C
stupid warning
'@ty :C

Method typing

X:C,this: CFtg : Eg Eyp <: Cp
CT(C) = class C extends D {...}
override(m, D, C—Cq)

Com (C X) {return tg;} OK in C

Class typing

K=c(D g, Cf) {super(g); this.f = f

fieldsD)=D g M OK in C

class C extends D {C f; K M} OK

(T-FIELD)

(T-INVK)

(T-NEw)

(T-UCasT)

(T-DCasrT)

(T-SCasT)

M OK in C

Polymorphic Lambda-Calculus (with fix and booleans)

Ax:T.t

tt

let x=t in t

fix t

true

false

if t then t else t
M.t

t [T]

Ax:T.t
true
false
AX.t

VX.T

)
T, X

Fvaluation

(Ax:T11.t12) Vo2 — [x — Valtyo
let x=vq in tg — [x — vi]ts

fix (Ax:Ty.t2)
— [x— (fix (Ax:Tp.t2))]te

tp — t

fix t; — fix t)
if true then to else t3 — to

9

terms
variable
abstraction
application
let binding
fized point of t
constant true
constant false
conditional
type abstraction
type application

values
abstraction value
true value
false value
type abstraction value

types
type of booleans
type variable
type of functions
universal type
type environments

empty type env.
type variable binding

(E-ApPP2)

(E-APPABS)

(E-LETV)

(E-FIXBETA)

(E-F1x)

(E-IFTRUE)

if false then ts else tz3 — t3

t; — t)

if t; then ts else t3 — if t} then ty else t3

(AX.t12) [T2] — [X > To]t12

Typing

x:Tel
I'kFx:T

I'x:T1 Ftg @ Ty
I'EAx:Ty.t2 1 T1—Ts

'ty : T11—Ti2 'ty @ Ty
I'Fty tg @ Tio

'kt : Ty P,X2T1|_t2:T2
I'Flet x=t; in t5 : Ty

'ty : T1—T
I'fix t1 : Ty

I'+ true : Bool
I' false : Bool

I'ty : Bool I'Fty: T I'bFt3:T
I'if t; then to else t3 : T

F,X"tg b)
' AX.ty : VX.Ty

'ty : VX.Tyo
'ty [To] : [X!—>T2]T12

10

(E-IFFALSE)

(E-IF)

(E-TapPTABS)

'kt :T

(T-VAR)

(T-ABS)

(T-App)

(T-LET)

(T-F1x)

(T-TRUE)

(T-FALSE)

(T-Ir)

(T-TABS)

(T-TAPP)

