
CIS 500 — Software Foundations

Final Exam

December 20, 2006

Name or WPE-I Id:

Score

1

2

3

4

5

6

7

8

9

10

11

Total

Instructions

• This is a closed-book exam.

• You have 120 minutes to answer all of the questions. The entire exam is worth 120 points.

• Questions vary significantly in difficulty, and the point value of a given question is not always exactly
proportional to its difficulty. Do not spend too much time on any one question.

• Partial credit will be given. All correct answers are short. The back side of each page and the companion
handout may be used as scratch paper.

• Good luck!

1

Inductively Defined Relations

Define the syntactic categories of blobs (written x) and counts (written y) as follows:

x ::= ♯
♭
♮
x · x

y ::= 0
+y
−y

That is, a blob is a tree whose leaves are labeled ♯, ♮, or ♭; a count is a sequence of +s and −s ending in 0.
Now define the relation “accumulating x onto y yields y′,” written x y y ⊲ y′, as the least three-place

relation closed under the following rules:

♯ y y ⊲ +y (Sharp)

♭ y y ⊲ −y (Flat)

♮ y y ⊲ y (Natural)

x1 y y ⊲ y′′ x2 y y′′
⊲ y′

x1 · x2 y y ⊲ y′
(Dot)

x2 · x1 y y ⊲ y′

x1 · x2 y y ⊲ y′
(Swap)

Notice that the result of accumulating x onto y always has y itself as a suffix, and that it additionally includes
one + for every ♯ in x and one − for every ♭ in x. The middle component of the relation, y, is analogous to
the “accumulator parameter” sometimes used by tail-recursive OCaml functions. The Swap rule introduces
some flexibility in the order of +s and −s in y′, relative to the positions of ♯s and ♭s in x.

2

1. (6 points) Are the following statements derivable? (Write YES or NO for each.)

(a) ♯ · (♮ · ♮) y 0 ⊲ +0

(b) ♯ · (♯ · ♭) y 0 ⊲ + − +0

(c) (♯ · ♮) · (♭ · ♮) y +0 ⊲ + + −0

3

2. (20 points) Write a careful inductive proof of the following fact. Make sure to explictly mention every
step in the proof (use of an assumption, use of the induction hypothesis, use of one of the inference
rules, etc.).

Fact: For every x there is some y′ such that x y 0 ⊲ y′

4

Untyped Lambda-Calculus

The following problem concerns the untyped lambda-calculus. This system is summarized on page 1
of the companion handout.

3. (6 points) Recall the definitions of observational and behavioral equivalence from the lecture notes:

• Two terms s and t are observationally equivalent iff either both are normalizable (i.e., they reach
a normal form after a finite number of evaluation steps) or both are divergent.

• Terms s and t are behaviorally equivalent iff, for every finite sequence of values v1, v2, ..., vn

(including the empty sequence), the applications

s v1 v2 ... vn

and
t v1 v2 ... vn

are observationally equivalent.

For each of the following pairs of terms, write YES if the terms are behaviorally equivalent and NO if
they are not.

(a) (λx. λy. x (λz. z) y)

and (λx. λy. (λz. z) x y)

(b) (λs. λz. s (s z))

and (λn. λs. λz. s (n s z)) (λs. λz. s z)

(c) (λx. x x) (λx. x x)

and Z (λg. λh. h) (λz. z)

where Z = (λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y), as in lecture notes

5

Subtyping

The following problems concern the simply typed lambda-calculus with subtyping (and records, vari-
ants, and references). This system is summarized on page 2 of the companion handout.

4. (10 points) Circle T or F for each of the following statements.

(a) There is an infinite descending chain of distinct types in the subtype relation—that is, an infinite
sequence of types S0, S1, etc., such that all the Si’s are different and each Si+1 is a subtype of Si.

T F

(b) There is an infinite ascending chain of distinct types in the subtype relation—that is, an infinite
sequence of types S0, S1, etc., such that all the Si’s are different and each Si+1 is a supertype of
Si.

T F

(c) There exists a type that is a subtype of every other type.

T F

(d) There exists a record type that is a subtype of every other record type.

T F

(e) There exists a variant type that is a subtype of every other variant type.

T F

6

5. (15 points) The standard subtyping rule for references is:

T1 <: S1 S1 <: T1

Ref S1 <: Ref T1

(S-Ref)

Suppose we drop the first premise so that Ref becomes a covariant type constructor:

S1 <: T1

Ref S1 <: Ref T1

(S-Ref-New)

Indicate whether each of the following properties remains true (write “TRUE”) or becomes false (write
“FALSE”), and briefly explain why.

(a) Progress: Suppose t is a closed, well-typed term (that is, ∅|Σ ⊢ t : T for some T and Σ). Then
either t is a value or else, for any store µ such that ∅|Σ ⊢ µ, there is some term t′ and store µ′

with t|µ −→ t′|µ′.

(b) Preservation: If

Γ|Σ ⊢ t : T

Γ|Σ ⊢ µ
t|µ −→ t′|µ′

then, for some Σ′ ⊇ Σ,

Γ|Σ′ ⊢ t′ : T

Γ|Σ′ ⊢ µ′.

(c) Existence of joins: For every pair of types S and T there is some type J such that S and T are
both subtypes of J and such that, for any other type U, if S and T are both subtypes of U, then J

is a subtype of U.

7

Object Encodings in Lambda-Calculus

The questions in this section are based the following small class hierarchy encoded in lambda-calculus.
(Note that this encoding is in the simpler style of section 18.11 of TAPL; it does not incorporate the
refinements for improved efficiency discussed at the very end of the chapter, in 18.12.)

/* A couple of miscellaneous helper functions -- "not" on booleans... */

not = λb:Bool. if b then false else true;

/* and a comparison function for numbers: */

leq =

fix (λf:Nat→Nat→Bool.

λm:Nat. λn:Nat.

if iszero m then true

else if iszero n then false

else f (pred m) (pred n));

/* The interface type of "pair objects": */

Pair = {set1:Nat→Unit, set2:Nat→Unit, lessoreq:Unit→Bool, greater:Unit→Bool};

/* The internal representation of "pair objects": */

PairRep = {x1: Ref Nat, x2:Ref Nat};

/* A class of "abstract pair objects." Note that the lessoreq and

greater methods call each other recursively. */

absPairClass =

λr:PairRep.

λself: Unit→Pair.

λ_:Unit.

{set1 = λi:Nat. r.x1:=i,

set2 = λi:Nat. r.x2:=i,

lessoreq = λ_:Unit. not ((self unit).greater unit),

greater = λ_:Unit. not ((self unit).lessoreq unit)};

/* A function that creates a new abstract pair object: */

newAbsPair =

λ_:Unit. let r = {x1=ref 0, x2=ref 0} in

fix (absPairClass r) unit;

/* A subclass that overrides the lessoreq method: */

pairClass =

λr:PairRep.

λself: Unit→Pair.

λ_:Unit.

let super = absPairClass r self unit in

{set1 = super.set1,

set2 = super.set2,

lessoreq = λ_:Unit. leq (!(r.x1)) (!(r.x2)),

greater = super.greater};

/* A function that creates a new pair object: */

newPair =

λ_:Unit. let r = {x1=ref 0, x2=ref 0} in

fix (pairClass r) unit;

8

6. (6 points) Circle T or F for each of the following statements.

(a) The expression newAbsPair unit diverges.

T F

(b) The expression (newAbsPair unit).set1 5 diverges.

T F

(c) The expression (newAbsPair unit).greater unit diverges.

T F

(d) The expression newPair unit diverges.

T F

(e) The expression (newPair unit).set1 5 yields unit.

T F

(f) The expression (newPair unit).greater unit yields false.

T F

9

7. (16 points) Write another class myPairClass that uses pairClass as its superclass and that adds
one more method, called setSmaller, that calls the lessoreq method to determine which field is
smaller and then calls either the set1 or the set2 method to update the value of this field. (Your new
method should not use :=, !, or numeric comparison directly.) You do not need to write the newMyPair
function—just the class.

MyPair = {set1:Nat→Unit, set2:Nat→Unit,

lessoreq:Unit→Bool, greater:Unit→Bool,

setSmaller:Nat→Unit};

myPairClass =

10

Featherweight Java with Exceptions

The problems in this section deal with an extension of FJ with exceptions. The definition of the original
FJ is given for reference on page 6 of the companion handout.

The full syntax of terms in the extended language, including two new syntactic forms for raising and
handling errors, is:

t ::=
x variable

t.f field access

t.m(t) method invocation

new C(t) object creation

(C) t cast

error run-time error

try t with t trap errors

(Note that we are adding the simplest form of exceptions here—exceptions are just the term error,
with no additional value carried along.)

The typing rules for error and try...with... are standard:

Γ ⊢ error : C (T-Error)

Γ ⊢ t1 : C Γ ⊢ t2 : C

Γ ⊢ try t1 with t2 : C
(T-Try)

Having added exceptions to the system, we no longer need to define failing casts as stuck terms (as in
original FJ); instead, we can make a failing cast raise an exception:

C 6<: D

(D)(new C(v)) −→ error
(E-BadCast)

The other new evaluation rules follow the same pattern as in λ→ with exceptions: error “percolates
up” through the other term constructors, aborting their evaluation as it goes. For example:

error.m(u) −→ error (E-InvkError)

(new C(v)).m(u1...ui−1,error,ti+1...tn) −→ error (E-InvkErrorArg)

try error with t2 −→ t2 (E-TryError)

11

8. (10 points) What other evaluation rules do we need to add to complete the definition?

12

9. (6 points) State an appropriate progress theorem for the extended language. (Do not prove it.)

13

10. (18 points) The statement of the preservation theorem for FJ with exceptions is exactly the same as
for ordinary FJ:

Theorem: If Γ ⊢ t : C and t −→ t′, then Γ ⊢ t′ : C′ for some C′ <: C.

Fill in the blanks in the following proof of this theorem. Make sure to explictly mention every step
required in the proof (use of an assumption, use of the induction hypothesis, use of a typing or evaluation
rule, etc.).

Proof: By induction on a derivation of t −→ t′, with a case analysis on the final rule. (Just three of
the cases are given here; we are eliding several others.)

Case E-BadCast: t = (D)(new B(v)) t′ = error B 6<: D

Case E-TryError: t = try error with t2 t′ = t2

Case E-CastNew: t = (D)(new C0(v)) C0 <: D t′ = new C0(v)

14

Polymorphism

The following problem concerns the polymorphic lambda-calculus (with a primitive fix construct and
booleans). This system is summarized on page 9 of the companion handout.

11. (7 points) Suppose (following the example in Chapter 23 of TAPL and in the lecture notes) that our
language is also equipped with a type constructor List and the following term constructors for the
usual list manipulation primitives.

nil : ∀ X. List X

cons : ∀ X. X → List X → List X

isnil : ∀ X. List X → Bool

head : ∀ X. List X → X

tail : ∀ X. List X → List X

Complete the following definition of a mapfilter function on lists by filling in the missing type param-
eters (mapfilter is an “all in one” combination of map and filter—it filters a list using the boolean
function test and applies f to each element of the resulting list). All necessary type parameters are
indicated with blanks, which you are to fill in.

mapfilter = λX. λY. λtest:X → Bool. λf:X → Y

(fix (λrec:List X → List Y.

λxs:List X.

if isnil [] xs then

nil []

else if test (head [] xs) then

cons [] (f (head [] xs)) (rec (tail [] xs))

else

rec (tail [] xs)))

15

Companion handout

Full definitions of the systems
used in the exam

Untyped Lambda-calculus

Syntax

t ::= terms

x variable

λx.t abstraction

t t application

v ::= values

λx.t abstraction value

Evaluation

t1 −→ t′1

t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2

v1 t2 −→ v1 t′2
(E-App2)

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

1

Simply-typed lambda calculus with subtyping
(and records and variants)

Syntax

t ::= terms

x variable

λx:T.t abstraction

t t application

{li=ti
i∈1..n} record

t.l projection

unit constant unit

ref t reference creation

!t dereference

t:=t assignment

l store location

<l=t> (no as) tagging

case t of <li=xi>⇒ti
i∈1..n case

v ::= values

λx:T.t abstraction value

{li=vi
i∈1..n} record value

unit constant unit

l store location

T ::= types

{li:Ti
i∈1..n} type of records

Top maximum type

T→T type of functions

Unit unit type

Ref T type of reference cells

<li:Ti
i∈1..n> type of variants

Γ ::= type environments

∅ empty type env.

µ ::= stores

∅ empty store

µ, l = v location binding

Σ ::= store typings

∅ empty store typing

Σ, l:T location typing

Evaluation t|µ −→ t′|µ′

t1|µ −→ t′1|µ
′

t1 t2|µ −→ t′1 t2|µ
′

(E-App1)

t2|µ −→ t′2|µ
′

v1 t2|µ −→ v1 t′2|µ
′

(E-App2)

2

(λx:T11.t12) v2|µ −→ [x 7→ v2]t12|µ (E-AppAbs)

{li=vi
i∈1..n}.lj |µ −→ vj |µ (E-ProjRcd)

l /∈ dom(µ)

ref v1|µ −→ l|(µ, l 7→ v1)
(E-RefV)

t1|µ −→ t′1|µ
′

ref t1|µ −→ ref t′1|µ
′

(E-Ref)

µ(l) = v

!l|µ −→ v|µ
(E-DerefLoc)

t1|µ −→ t′1|µ
′

!t1|µ −→ !t′1|µ
′

(E-Deref)

l:=v2|µ −→ unit|[l 7→ v2]µ (E-Assign)

t1|µ −→ t′1|µ
′

t1:=t2|µ −→ t′1:=t2|µ
′

(E-Assign1)

t2|µ −→ t′2|µ
′

v1:=t2|µ −→ v1:=t
′

2|µ
′

(E-Assign2)

case (<lj=vj> as T) of <li=xi>⇒ti
i∈1..n|µ −→ [xj 7→ vj]tj |µ (E-CaseVariant)

t0|µ −→ t′0|µ
′

case t0 of <li=xi>⇒ti
i∈1..n|µ −→ case t′0 of <li=xi>⇒ti

i∈1..n|µ′
(E-Case)

ti|µ −→ t′i|µ
′

<li=ti> as T|µ −→ <li=t
′

i> as T|µ′
(E-Variant)

Typing Γ|Σ ⊢ t : T

for each i Γ ⊢ ti : Ti

Γ ⊢ {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-Rcd)

Γ ⊢ t1 : {li:Ti
i∈1..n}

Γ ⊢ t1.lj : Tj

(T-Proj)

x:T ∈ Γ

Γ|Σ ⊢ x : T
(T-Var)

Γ, x:T1|Σ ⊢ t2 : T2

Γ|Σ ⊢ λx:T1.t2 : T1→T2

(T-Abs)

Γ|Σ ⊢ t1 : T11→T12 Γ|Σ ⊢ t2 : T11

Γ|Σ ⊢ t1 t2 : T12

(T-App)

3

Γ ⊢ t : S S <: T

Γ ⊢ t : T
(T-Sub)

Γ|Σ ⊢ unit : Unit (T-Unit)

Σ(l) = T1

Γ|Σ ⊢ l : Ref T1

(T-Loc)

Γ|Σ ⊢ t1 : T1

Γ|Σ ⊢ ref t1 : Ref T1

(T-Ref)

Γ|Σ ⊢ t1 : Ref T11

Γ|Σ ⊢ !t1 : T11

(T-Deref)

Γ|Σ ⊢ t1 : Ref T11 Γ|Σ ⊢ t2 : T11

Γ|Σ ⊢ t1:=t2 : Unit
(T-Assign)

Γ ⊢ t1 : T1

Γ ⊢ <l1=t1> : <l1:T1>
(T-Variant)

Γ ⊢ t0 : <li:Ti
i∈1..n>

for each i Γ, xi:Ti ⊢ ti : T

Γ ⊢ case t0 of <li=xi>⇒ti
i∈1..n : T

(T-Case)

Subtyping S <: T

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

S <: Top (S-Top)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S-Arrow)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

T1 <: S1 S1 <: T1

Ref S1 <: Ref T1

(S-Ref)

<li:Ti
i∈1..n> <: <li:Ti

i∈1..n+k> (S-VariantWidth)

4

for each i Si <: Ti

<li:Si
i∈1..n> <: <li:Ti

i∈1..n>
(S-VariantDepth)

<kj:Sj
j∈1..n> is a permutation of <li:Ti

i∈1..n>

<kj:Sj
j∈1..n> <: <li:Ti

i∈1..n>
(S-VariantPerm)

5

Featherweight Java

Syntax

CL ::= class declarations

class C extends C {C f; K M}

K ::= constructor declarations

C(C f) {super(f); this.f=f;}

M ::= method declarations

C m(C x) {return t;}

t ::= terms

x variable

t.f field access

t.m(t) method invocation

new C(t) object creation

(C) t cast

v ::= values

new C(v) object creation

Subtyping C<:D

C <: C

C <: D D <: E

C <: E

CT(C) = class C extends D {...}

C <: D

Field lookup fields(C) = C f

fields(Object) = •

CT(C) = class C extends D {C f; K M}

fields(D) = D g

fields(C) = D g, C f

Method type lookup mtype(m, C) = C→C

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} ∈ M

mtype(m, C) = B→B

CT(C) = class C extends D {C f; K M}

m is not defined in M

mtype(m, C) = mtype(m, D)

6

Method body lookup mbody(m, C) = (x, t)

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} ∈ M

mbody(m, C) = (x, t)

CT(C) = class C extends D {C f; K M}

m is not defined in M

mbody(m, C) = mbody(m, D)

Valid method overriding override(m, D, C→C0)

mtype(m, D) = D→D0 implies C = D and C0 = D0

override(m, D, C→C0)

Evaluation t −→ t′

fields(C) = C f

(new C(v)).fi −→ vi

(E-ProjNew)

mbody(m, C) = (x, t0)

(new C(v)).m(u) −→ [x 7→ u, this 7→ new C(v)]t0

(E-InvkNew)

C <: D

(D)(new C(v)) −→ new C(v)
(E-CastNew)

t0 −→ t′0

t0.f −→ t′0.f
(E-Field)

t0 −→ t′0

t0.m(t) −→ t′0.m(t)
(E-Invk-Recv)

ti −→ t′i

v0.m(v, ti, t)

−→ v0.m(v, t′i, t)

(E-Invk-Arg)

ti −→ t′i

new C(v, ti, t)

−→ new C(v, t′i, t)

(E-New-Arg)

t0 −→ t′0

(C)t0 −→ (C)t′0
(E-Cast)

Term typing Γ ⊢ t : C

x:C ∈ Γ

Γ ⊢ x : C
(T-Var)

7

Γ ⊢ t0 : C0 fields(C0) = C f

Γ ⊢ t0.fi : Ci

(T-Field)

Γ ⊢ t0 : C0

mtype(m, C0) = D→C

Γ ⊢ t : C C <: D

Γ ⊢ t0.m(t) : C
(T-Invk)

fields(C) = D f

Γ ⊢ t : C C <: D

Γ ⊢ new C(t) : C
(T-New)

Γ ⊢ t0 : D D <: C

Γ ⊢ (C)t0 : C
(T-UCast)

Γ ⊢ t0 : D C <: D C 6= D

Γ ⊢ (C)t0 : C
(T-DCast)

Γ ⊢ t0 : D C 6<: D D 6<: C

stupid warning

Γ ⊢ (C)t0 : C
(T-SCast)

Method typing M OK in C

x : C, this : C ⊢ t0 : E0 E0 <: C0

CT(C) = class C extends D {...}

override(m, D, C→C0)

C0 m (C x) {return t0;} OK in C

Class typing C OK

K = C(D g, C f) {super(g); this.f = f;}

fields(D) = D g M OK in C

class C extends D {C f; K M} OK

8

Polymorphic Lambda-Calculus (with fix and booleans)

Syntax

t ::= terms

x variable

λx:T.t abstraction

t t application

let x=t in t let binding

fix t fixed point of t

true constant true

false constant false

if t then t else t conditional

λX.t type abstraction

t [T] type application

v ::= values

λx:T.t abstraction value

true true value

false false value

λX.t type abstraction value

T ::= types

Bool type of booleans

X type variable

T→T type of functions

∀X.T universal type

Γ ::= type environments

∅ empty type env.

Γ, X type variable binding

Evaluation t −→ t′

t1 −→ t′1

t1 t2 −→ t′1 t2

(E-App1)

t2 −→ t′2

v1 t2 −→ v1 t′2
(E-App2)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

let x=v1 in t2 −→ [x 7→ v1]t2 (E-LetV)

fix (λx:T1.t2)

−→ [x 7→ (fix (λx:T1.t2))]t2

(E-FixBeta)

t1 −→ t′1

fix t1 −→ fix t′1
(E-Fix)

if true then t2 else t3 −→ t2 (E-IfTrue)

9

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′1

if t1 then t2 else t3 −→ if t′1 then t2 else t3

(E-If)

(λX.t12) [T2] −→ [X 7→ T2]t12 (E-TappTabs)

Typing Γ ⊢ t : T

x:T ∈ Γ

Γ ⊢ x : T
(T-Var)

Γ, x:T1 ⊢ t2 : T2

Γ ⊢ λx:T1.t2 : T1→T2

(T-Abs)

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12

(T-App)

Γ ⊢ t1 : T1 Γ, x:T1 ⊢ t2 : T2

Γ ⊢ let x=t1 in t2 : T2

(T-Let)

Γ ⊢ t1 : T1→T1

Γ ⊢ fix t1 : T1

(T-Fix)

Γ ⊢ true : Bool (T-True)

Γ ⊢ false : Bool (T-False)

Γ ⊢ t1 : Bool Γ ⊢ t2 : T Γ ⊢ t3 : T

Γ ⊢ if t1 then t2 else t3 : T
(T-If)

Γ, X ⊢ t2 : T2

Γ ⊢ λX.t2 : ∀X.T2

(T-TAbs)

Γ ⊢ t1 : ∀X.T12

Γ ⊢ t1 [T2] : [X 7→ T2]T12

(T-TApp)

10

