
TOP
2004/10/19
page 0

CIS 500 — Software Foundations

Midterm I
Answer key

October 13, 2004

Name:

Student ID:

Email

Status registered for the course

not registered: trying to improve a previous grade

not registered: just taking the exam for practice

Program undergrad

undergrad (MSE submatriculant)

CIS MSE

CIS MCIT

CIS PhD

other

TOP
2004/10/19
page 1

Instructions

• This is a closed-book exam: you may not make use of any books or notes.

• You have 80 minutes to answer all of the questions. The entire exam is worth 80 points.

• Questions vary significantly in difficulty, and the point value of a given question is not always exactly
proportional to its difficulty. Do not spend too much time on any one question.

• Partial credit will be given. All correct answers are short. The back side of each page may be used as
a scratch pad.

• Good luck!

Please mark your preferences for the time and date of the final exam.
Date Time can’t do it rather not ok with me
12/16 8:30-10:30
12/20 1:30-3:30
12/21 11-1
12/21 1:30-3:30

1

TOP
2004/10/19
page 2

Semantics of simple programming languages

The following four questions concern the following simple programming language:

t ::= terms
true constant true
false constant false
maybe constant maybe
perhaps t1 then t2 else t3 conditional
definitely t1 then t2 else t3 another conditional

v ::= values
true true value
false false value
maybe maybe value

and its small-step operational semantics.

perhaps true then t2 else t3 −→ t2 (E-PT)

perhaps maybe then t2 else t3 −→ t2 (E-PM)

perhaps false then t2 else t3 −→ t3 (E-PF)

definitely true then t2 else t3 −→ t2 (E-DT)

definitely maybe then t2 else t3 −→ t3 (E-DM)

definitely false then t2 else t3 −→ t3 (E-DF)

t1 −→ t ′

1

perhaps t1 then t2 else t3 −→ perhaps t ′

1
then t2 else t3

(E-P)

t1 −→ t ′

1

definitely t1 then t2 else t3 −→ definitely t ′

1
then t2 else t3

(E-M)

1. (15 points)

(a) State the structural induction principle for the syntax of this language.
Answer: For all terms t, P(t) is true if and only if

• P(true), P(false), and P(maybe) are true
• P(perhaps t1 then t2 else t3) is true given P(t1), P(t2) and P(t3).
• P(definitely t1 then t2 else t3) is true given P(t1), P(t2) and P(t3).

2

TOP
2004/10/19
page 3

(b) Prove by structural induction, the following statement: For all t, either t is a value or t −→

t ′. Note: If two cases of this proof are extremely similar, you may say that the second case is
analogous to the first, instead of writing the case out in full.
Answer: The property that we would like to show is P(t) = either t is a value or t −→ t ′.

• Showing that the property is true when t is true, false or maybe is trivial, because t is a value
in each of these cases.

• Suppose t is perhaps t1 then t2 else t3. By induction, we know that either t1 is a value, or
t1 −→ t ′

1
.

– If t1 is true then t −→ t2 by E-PT.
– If t1 is false then t −→ t3 by E-PF.
– If t1 is maybe then t −→ t2 by E-PM.
– If t1 −→ t ′

1
then t −→ perhaps t ′

1
then t2 else t3 by E-P.

• Suppose t is definitely t1 then t2 else t3. This case is analogous to the previous.

3

TOP
2004/10/19
page 4

2. (4 points) We can define a new term form and t1 t2 with the following operational semantics rules:

and true v −→ v

and maybe true −→ maybe

and maybe maybe −→ maybe

and maybe false −→ false

and false v −→ false

t1 −→ t ′

1

and t1 t2 −→ and t ′

1
t2

t2 −→ t ′

2

and v t2 −→ and v t ′

2

However, this term is definable using the existing constructs of the language. What is its definition?

and t1 t2 =

Answer: definitely t1 then t2 else (perhaps t2 then t1 else false).

3. (8 points) We can also encode this language into the untyped lambda calculus. Here is part of the
encoding, fill in the missing pieces in the simplest way possible.

comp(true) = λx.λy.λz. x (λw.w)

comp(false) = __

Answer: λx.λy. λz. z (λw.w)

comp(maybe) = __

Answer: λx.λy. λz. y (λw.w)

comp(perhaps t1 then t2 else t3) = comp(t1) (λw.comp(t2)) (λw.comp(t2))(λw.comp(t3))

comp(definitely t1 then t2 else t3) =

Answer: comp(t1) (λw.comp(t2)) (λw.comp(t3))(λw.comp(t3))

4

TOP
2004/10/19
page 5

4. (8 points) The following O’Caml definitions implement the small-step evaluation relation almost cor-
rectly, but there are several mistakes or omissions. Change the code below to repair these mistakes.

type term = TmTrue | TmFalse | TmMaybe
| TmPerhaps of term * term * term
| TmDefinitely of term * term * term

let rec ss t = match t with

TmPerhaps(t1,t2,t3) →

(match t1 with

TmTrue → ss t2

| TmMaybe → ss t2

| TmFalse → ss t3

| _ → TmPerhaps(ss t11, ss t2, t3))

| TmDefinitely(TmTrue,t2,t3) → ss t2

| TmDefinitely(TmFalse,t2,t3) → ss t3

| TmDefinitely(t1,t2,t3) → TmPerhaps(ss t1, t2, t3)

| TmTrue → ss TmTrue

| TmFalse → TmFalse

Answer:

• Cases for perhaps true, perhaps false, perhaps maybe and definitely true shouldn’t
call ss recursively. Also, the last case for perhaps shouldn’t call ss recursively for t2.

• Last case for perhaps should say t1 instead of t11.

• Missing case for definitely maybe.

• Congruence rule for definitely goes to perhaps.

• Because this is a single step semantics, there shouldn’t be cases for true and false, these are values.
For these terms, an exception should be raised.

5

TOP
2004/10/19
page 6

Untyped lambda-calculus

For each of the following pairs of untyped lambda-terms, answer the following three questions:

(a) What are their normal forms? If a term does not have a normal form, write none.

(b) If they have normal forms, are these normal forms alpha-equivalent? If they are alpha-equivalent
write yes, if they are not write no, if at least one term does not have a normal form write not
applicable.

(c) Are these terms behaviorally equivalent? Write yes or no.

Recall the following definitions of observational and behavioral equivalence from lecture notes:

• Two terms s and t are observationally equivalent iff either both are normalizable (i.e., they reach a
normal form after a finite number of evaluation steps) or both are divergent.

• Terms s and t are behaviorally equivalent iff, for every finite sequence of values v1, ... vn, the
applications

s v1 ... vn

and
t v1 ... vn

are observationally equivalent.

5. (6 points) (λx. x x)(λx. x x) and (λx. x x x)(λx. x x x).

(a) Answer: none and none

(b) Answer: not applicable

(c) Answer: yes

6. (6 points) (λx.λy.x) and (λx.λy. (λw.w) x).

(a) Answer: (λx.λy.x) and (λx.λy. (λw.w) x)

(b) Answer: no

(c) Answer: yes

7. (6 points) (λx.λy.x)(λz.y) and (λx.λy.x)(λx.w).

(a) Answer: λw.λz.y and λy. λx. w

(b) Answer: no

(c) Answer: yes

6

TOP
2004/10/19
page 7

Functional Programming

8. (9 points) The following is a slightly different encoding of natural numbers in the untyped lambda
calculus.

s0 = λs.λz.z
s1 = λs.λz.s s0 z
s2 = λs.λz.s s1 (s s0 z)
s3 = λs.λz.s s2 (s s1 (s s0 z))

scc = λn.λs.λz.s n (n s z)

(a) Define the predecessor function prd for this encoding, using the simplest term you can.
Answer: prd = λn. n (λm.λr. m) s0

(b) Define the addition function plus for this encoding, using the simplest term you can.
Answer: plus = λn. λm. n (λx. scc) m

or the same definition for plus as for Church numerals:
plus = λn. λm. λs.λz. n s (m s z)

(c) Define the function sumupto that, given the encoding of a number m, calculates the sum of all
the numbers less than or equal to m. Use the simplest term you can, and do not use fix.
Answer: sumupto = λm. m plus m is the simplest answer.
Several people gave a function that sums all of the numbers less than m, such as λm. m plus s0. Partial
credit was awarded for this function.

7

TOP
2004/10/19
page 8

Typed arithmetic expressions

The full definition of the language of typed arithmetic and boolean expressions is reproduced, for
your reference, on page 10.

9. (6 points) Suppose we add the following two new rules to the evaluation relation:

pred true −→ pred false

pred false −→ pred true

Which of the following properties will remain true in the presence of this rule? For each one, circle
either “remains true” or else “becomes false.” If a property becomes false, also write down a counter-
example to the property.

(a) Termination of evaluation (for every term t there is some normal form t ′ such that t −→
∗ t ′)

remains true becomes false, because

Answer: Becomes false. pred true −→ pred false −→ pred true ...

(b) Progress (if t is well typed, then either t is a value or else t −→ t ′ for some t ′)

remains true becomes false, because

Answer: Remains true

(c) Preservation (if t has type T and t −→ t ′, then t ′ also has type T)

remains true becomes false, because

Answer: Remains true

10. (6 points) Suppose, instead, that we add this new rule to the typing relation:

t2 : Nat

if true then t2 else t3 : Nat

Which of the following properties remains true? (Answer in the same style as the previous question.)

(a) Termination of evaluation (for every term t there is some normal form t ′ such that t −→
∗ t ′)

remains true becomes false, because

Answer: Remains true

(b) Progress (if t is well typed, then either t is a value or else t −→ t ′ for some t ′)

remains true becomes false, because

Answer: Remains true

(c) Preservation (if t has type T and t −→ t ′, then t ′ also has type T)

remains true becomes false, because

8

TOP
2004/10/19
page 9

Answer: Remains true

11. (6 points) Suppose, instead, that we add this new rule to the typing relation:

t : Bool

succ t : Bool

Which of the following properties remains true? (Answer in the same style as the previous question.)

(a) Termination of evaluation (for every term t there is some normal form t ′ such that t −→
∗ t ′)

remains true becomes false, because

Answer: Remains true

(b) Progress (if t is well typed, then either t is a value or else t −→ t ′ for some t ′)

remains true becomes false, because

Answer: Becomes false. succ true is well-typed, but stuck.

(c) Preservation (if t has type T and t −→ t ′, then t ′ also has type T)

remains true becomes false, because

Answer: Remains true

9

TOP
2004/10/19
page 10

For reference: Boolean and arithmetic expressions

Syntax

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
true true value
false false value
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value

T ::= types
Bool type of booleans
Nat type of numbers

Evaluation
if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t ′

1

if t1 then t2 else t3 −→ if t ′

1
then t2 else t3

(E-IF)

t1 −→ t ′

1

succ t1 −→ succ t ′

1

(E-SUCC)

pred 0 −→ 0 (E-PREDZERO)

pred (succ nv1) −→ nv1 (E-PREDSUCC)

t1 −→ t ′

1

pred t1 −→ pred t ′

1

(E-PRED)

iszero 0 −→ true (E-ISZEROZERO)

iszero (succ nv1) −→ false (E-ISZEROSUCC)

t1 −→ t ′

1

iszero t1 −→ iszero t ′

1

(E-ISZERO)

continued on next page...

10

TOP
2004/10/19
page 11

Typing
true : Bool (T-TRUE)

false : Bool (T-FALSE)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-IF)

0 : Nat (T-ZERO)

t1 : Nat

succ t1 : Nat
(T-SUCC)

t1 : Nat

pred t1 : Nat
(T-PRED)

t1 : Nat

iszero t1 : Bool
(T-ISZERO)

11

TOP
2004/10/19
page 12

For reference: Untyped lambda calculus

Syntax

t ::= terms
x variable
λx.t abstraction
t t application

v ::= values
λx:T.t abstraction value

Evaluation
t1 −→ t ′

1

t1 t2 −→ t ′

1
t2

(E-APP1)

t2 −→ t ′

2

v1 t2 −→ v1 t ′

2

(E-APP2)

(λx.t12) v2 −→ [x 7→ v2]t12 (E-APPABS)

12

