CIS 500 — Software Foundations

Midterm I Answer key October 13, 2004

Name:	
Student ID:	
Email	
Status	registered for the course
	not registered: trying to improve a previous grade
	not registered: just taking the exam for practice
Program	undergrad
	undergrad (MSE submatriculant)
	CIS MSE
	CIS MCIT
	CIS PhD
	other

Instructions

- This is a closed-book exam: you may not make use of any books or notes.
- You have 80 minutes to answer all of the questions. The entire exam is worth 80 points.
- Questions vary significantly in difficulty, and the point value of a given question is not always exactly proportional to its difficulty. Do not spend too much time on any one question.
- Partial credit will be given. All correct answers are short. The back side of each page may be used as a scratch pad.
- Good luck!

Date	Time	can't do it	rather not	ok with me
12/16	8:30-10:30			
12/20	1:30-3:30			
12/21	11-1			
12/21	1:30-3:30			

Please mark your preferences for the time and date of the final exam.

Semantics of simple programming languages

The following four questions concern the following simple programming language:

<u> </u>	
t ::=	terms
true	constant true
false	constant false
maybe	constant maybe
perhaps t_1 then t_2 else t_3	conditional
definitely t_1 then t_2 else	t ₃ another conditional
v ::=	values
true	true value
false	false value
maybe	maybe value
and its <i>small-step</i> operational semant	ics.
-	(FDT

perhaps true then t_2 else $t_3 \longrightarrow t_2$	(E-PT)
perhaps maybe then t_2 else $t_3 \longrightarrow t_2$	(E-PM)
perhaps false then t_2 else $t_3 \longrightarrow t_3$	(E-PF)
definitely true then t_2 else $t_3 \longrightarrow t_2$	(E-DT)
definitely maybe then t_2 else $t_3 \longrightarrow t_3$	(E-DM)
definitely false then t_2 else $t_3 \longrightarrow t_3$	(E-DF)
$t_1 \longrightarrow t'_1$ perhaps t_1 then t_2 else t_3 \longrightarrow perhaps t'_1 then t_2 else t_3	(E-P)
$\frac{\texttt{t}_1 \longrightarrow \texttt{t}_1'}{\texttt{definitely}\texttt{t}_1 \texttt{then}\texttt{t}_2\texttt{else}\texttt{t}_3 \longrightarrow \texttt{definitely}\texttt{t}_1'\texttt{then}\texttt{t}_2\texttt{else}\texttt{t}_3}$	(E-M)

- 1. (15 points)
 - (a) State the structural induction principle for the syntax of this language. Answer: For all terms t, P(t) is true if and only if
 - P(true), P(false), and P(maybe) are true

- $P(\text{perhaps } t_1 \text{ then } t_2 \text{ else } t_3)$ is true given $P(t_1)$, $P(t_2)$ and $P(t_3)$.
- $P(definitely t_1 then t_2 else t_3)$ is true given $P(t_1)$, $P(t_2)$ and $P(t_3)$.

(b) Prove by structural induction, the following statement: For all t, either t is a value or t → t'. Note: If two cases of this proof are extremely similar, you may say that the second case is analogous to the first, instead of writing the case out in full.

Answer: The property that we would like to show is P(t) = either t is a value or $t \longrightarrow t'$.

- Showing that the property is true when t is true, false or maybe is trivial, because t is a value in each of these cases.
- Suppose t is perhaps t_1 then t_2 else t_3 . By induction, we know that either t_1 is a value, or $t_1 \longrightarrow t'_1$.
 - If t_1 is true then $t \longrightarrow t_2$ by E-PT.
 - If t_1 is false then $t \longrightarrow t_3$ by E-PF.
 - If t_1 is maybe then $t \longrightarrow t_2$ by E-PM.
 - If $t_1 \longrightarrow t'_1$ then $t \longrightarrow$ perhaps t'_1 then t_2 else t_3 by E-P.
- Suppose t is definitely t_1 then t_2 else t_3 . This case is analogous to the previous.

2. (4 points) We can define a new term form and $t_1 t_2$ with the following operational semantics rules:

```
and true v \longrightarrow v
and maybe true \longrightarrow maybe
and maybe maybe \longrightarrow maybe
and maybe false \longrightarrow false
and false v \longrightarrow false
\frac{t_1 \longrightarrow t'_1}{and t_1 t_2 \longrightarrow and t'_1 t_2}\frac{t_2 \longrightarrow t'_2}{and v t_2 \longrightarrow and v t'_2}
```

However, this term is *definable* using the existing constructs of the language. What is its definition? and $t_1 t_2 =$ Answer: definitely t_1 then t_2 else (perhaps t_2 then t1 else false).

3. (8 points) We can also encode this language into the untyped lambda calculus. Here is part of the encoding, fill in the missing pieces in the simplest way possible.

 $comp(true) = \lambda x . \lambda y . \lambda z . x (\lambda w . w)$

 $comp(false) = _$ $Answer: \lambda x . \lambda y . \lambda z . z (\lambda w . w)$ $comp(maybe) = _$ $Answer: \lambda x . \lambda y . \lambda z . y (\lambda w . w)$ $comp(perhaps t_1 then t_2 else t_3) = comp(t_1) (\lambda w . comp(t_2)) (\lambda w . comp(t_3))$ $comp(definitely t_1 then t_2 else t_3) =$

Answer: $comp(t_1)$ ($\lambda w.comp(t_2)$) ($\lambda w.comp(t_3)$)($\lambda w.comp(t_3)$)

4. (8 points) The following O'Caml definitions implement the small-step evaluation relation *almost correctly*, but there are several mistakes or omissions. Change the code below to repair these mistakes.

```
type term = TmTrue | TmFalse | TmMaybe
        | TmPerhaps of term * term * term
        | TmDefinitely of term * term * term
let rec ss t = match t with
     \text{TmPerhaps}(t1,t2,t3) \rightarrow
        (match t1 with
             \texttt{TmTrue} \quad \rightarrow \texttt{ss t2}
           | TmMaybe \rightarrow ss t2
           | TmFalse \rightarrow ss t3
           | \rightarrow \text{TmPerhaps}(\text{ss t11}, \text{ss t2}, \text{t3}))
   | TmDefinitely(TmTrue,t2,t3) \rightarrow ss t2
   | TmDefinitely(TmFalse,t2,t3) \rightarrow ss t3
   | TmDefinitely(t1,t2,t3) \rightarrow TmPerhaps(ss t1, t2, t3)
   | TmTrue \rightarrow ss TmTrue
   | TmFalse \rightarrow TmFalse
```

Answer:

- Cases for perhaps true, perhaps false, perhaps maybe and definitely true shouldn't call ss recursively. Also, the last case for perhaps shouldn't call ss recursively for t2.
- Last case for perhaps should say t1 instead of t11.
- Missing case for definitely maybe.
- Congruence rule for definitely goes to perhaps.
- Because this is a single step semantics, there shouldn't be cases for true and false, these are values. For these terms, an exception should be raised.

Untyped lambda-calculus

For each of the following pairs of untyped lambda-terms, answer the following three questions:

- (a) What are their normal forms? If a term does not have a normal form, write none.
- (b) If they have normal forms, are these normal forms alpha-equivalent? If they are alpha-equivalent write *yes*, if they are not write *no*, if at least one term does not have a normal form write *not applicable*.
- (c) Are these terms *behaviorally equivalent*? Write *yes* or *no*.

Recall the following definitions of observational and behavioral equivalence from lecture notes:

- Two terms s and t are *observationally equivalent* iff either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both are divergent.
- Terms s and t are *behaviorally equivalent* iff, for every finite sequence of values v_1 , ... v_n , the applications

and

 $tv_1 \dots v_n$

 $s v_1 \ldots v_n$

are observationally equivalent.

- 5. (6 points) $(\lambda x. xx)(\lambda x. xx)$ and $(\lambda x. xxx)(\lambda x. xxx)$.
 - (a) Answer: none and none
 - (b) Answer: not applicable
 - (c) Answer: yes
- 6. (6 points) $(\lambda x.\lambda y.x)$ and $(\lambda x.\lambda y. (\lambda w.w) x)$.
 - (a) Answer: $(\lambda x.\lambda y.x)$ and $(\lambda x.\lambda y.(\lambda w.w)x)$
 - (b) Answer: no
 - (c) Answer: yes
- 7. (6 points) $(\lambda x.\lambda y.x)(\lambda z.y)$ and $(\lambda x.\lambda y.x)(\lambda x.w)$.
 - (a) Answer: $\lambda w . \lambda z . y$ and $\lambda y . \lambda x . w$
 - (b) Answer: no
 - (c) Answer: yes

8. (9 points) The following is a slightly different encoding of natural numbers in the untyped lambda calculus.

```
s_{0} = \lambda s.\lambda z.z
s_{1} = \lambda s.\lambda z.s s_{0} z
s_{2} = \lambda s.\lambda z.s s_{1} (s s_{0} z)
s_{3} = \lambda s.\lambda z.s s_{2} (s s_{1} (s s_{0} z))
scc = \lambda n.\lambda s.\lambda z.s n (n s z)
```

- (a) Define the predecessor function prd for this encoding, using the simplest term you can.
 Answer: prd = λn. n (λm.λr. m) s₀
- (b) Define the addition function plus for this encoding, using the simplest term you can. Answer: plus = λn. λm. n (λx. scc) m or the same definition for plus as for Church numerals: plus = λn. λm. λs. λz. n s (m s z)
- (c) Define the function sumupto that, given the encoding of a number m, calculates the sum of all the numbers less than or equal to m. Use the simplest term you can, and do not use fix.

Answer: $sumupto = \lambda m$. mplus m is the simplest answer. Several people gave a function that sums all of the numbers less than m, such as λm . $mplus s_0$. Partial credit was awarded for this function.

Typed arithmetic expressions

The full definition of the language of typed arithmetic and boolean expressions is reproduced, for your reference, on page 10.

9. (6 points) Suppose we add the following two new rules to the evaluation relation:

pred true \longrightarrow pred false pred false \longrightarrow pred true

Which of the following properties will remain true in the presence of this rule? For each one, circle either "remains true" or else "becomes false." If a property becomes false, also write down a counter-example to the property.

(a) Termination of evaluation (for every term t there is some normal form t' such that $t \longrightarrow^* t'$)

	remains true	becomes false, because		
	Answer: Becomes false. pred true \longrightarrow pred false \longrightarrow pred true			
(b)	Progress (if t is well typed, then either t i	ess (if t is well typed, then either t is a value or else t \longrightarrow t' for some t')		
	remains true	becomes false, because		
	Answer: Remains true			

(c) Preservation (if t has type T and t \longrightarrow t', then t' also has type T)

remains true

becomes false, because

Answer: Remains true

10. (6 points) Suppose, instead, that we add this new rule to the typing relation:

 $\frac{t_2: \text{Nat}}{\text{if true then } t_2 \text{ else } t_3: \text{Nat}}$

Which of the following properties remains true? (Answer in the same style as the previous question.)

(a) Termination of evaluation (for every term t there is some normal form t' such that $t \longrightarrow^* t'$)

remains true

becomes false, because

Answer: Remains true

(b) Progress (if t is well typed, then either t is a value or else $t \longrightarrow t'$ for some t')

remains true

becomes false, because

Answer: Remains true

(c) Preservation (if t has type T and t \longrightarrow t', then t' also has type T)

remains true

becomes false, because

Answer: Remains true

11. (6 points) Suppose, instead, that we add this new rule to the typing relation:

t:Bool succt:Bool

Which of the following properties remains true? (Answer in the same style as the previous question.)

(a) Termination of evaluation (for every term t there is some normal form t' such that $t \longrightarrow^* t'$)

remains true

becomes false, because

Answer: Remains true

(b) Progress (if t is well typed, then either t is a value or else t \longrightarrow t' for some t')

remains true

becomes false, because

Answer: Becomes false. succ true is well-typed, but stuck.

(c) Preservation (if t has type T and t \longrightarrow t', then t' also has type T)

remains true

becomes false, because

Answer: Remains true

For reference: Boolean and arithmetic expressions

Syntax

egiiiii		
t ::=	<pre>true false if t then t else t 0 succ t pred t iszero t</pre>	<i>terms</i> <i>constant true</i> <i>constant false</i> <i>conditional</i> <i>constant zero</i> <i>successor</i> <i>predecessor</i> <i>zero test</i>
v ::=	true false nv	values true value false value numeric value
nv ::=	0 succ nv	numeric values zero value successor value
т ::=	Bool Nat	types type of booleans type of numbers

Evaluation

(E-IFTRUE)
(E-IFFALSE)
(E-IF)
(E-Succ)
(E-PredZero)
(E-PredSucc)
(E-Pred)
(E-IszeroZero)
(E-IszeroSucc)
(E-IsZero)

continued on next page...

Typing

true: Bool	(T-True)
false : Bool	(T-FALSE)
$\frac{t_1:Bool}{ift_1thent_2elset_3:T}$	(T-IF)
0 : Nat	(T-Zero)
t_1 : Nat succt ₁ : Nat	(T-Succ)
t_1 : Nat pred t_1 : Nat	(T-Pred)
t_1 : Nat iszerot ₁ : Bool	(T-IsZero)

For reference: Untyped lambda calculus

Syntax terms t ::= terms x variable $\lambda x.t$ abstraction tt application v ::= values $\lambda x:T.t$ abstraction value

Evaluation

$t_1 \longrightarrow t'_1$	(E-App1)
$t_1 t_2 \longrightarrow t'_1 t_2$ $t_2 \longrightarrow t'_2$	
$\frac{\mathbf{t}_2 \longrightarrow \mathbf{t}_2}{\mathbf{v}_1 \ \mathbf{t}_2 \longrightarrow \mathbf{v}_1 \ \mathbf{t}_2'}$	(E-App2)
$(\lambda x.t_{12}) v_2 \longrightarrow [x \mapsto v_2]t_{12}$	(E-AppAbs)