CIS 500 - Software Foundations
 Midterm I
 Answer key
 October 13, 2004

Name:

Student ID:

Email

Status ___ registered for the course
___ not registered: trying to improve a previous grade
___ not registered: just taking the exam for practice
Program undergrad
___ undergrad (MSE submatriculant)
___ CIS MSE
___ CIS MCIT
___ CIS PhD
___ other

Instructions

- This is a closed-book exam: you may not make use of any books or notes.
- You have 80 minutes to answer all of the questions. The entire exam is worth 80 points.
- Questions vary significantly in difficulty, and the point value of a given question is not always exactly proportional to its difficulty. Do not spend too much time on any one question.
- Partial credit will be given. All correct answers are short. The back side of each page may be used as a scratch pad.
- Good luck!

Please mark your preferences for the time and date of the final exam.

Date	Time	can't do it	rather not	ok with me
$12 / 16$	$8: 30-10: 30$			
$12 / 20$	$1: 30-3: 30$			
$12 / 21$	$11-1$			
$12 / 21$	$1: 30-3: 30$			

Semantics of simple programming languages

The following four questions concern the following simple programming language:

```
t ::=
    true
    false
    maybe
```



```
    definitely tr then t2 else t 3
v ::=
true
false
maybe
```

terms
constant true
constant false
constant maybe
conditional
another conditional
values
true value
false value maybe value
and its small-step operational semantics.

$$
\begin{gather*}
\text { perhaps true then } t_{2} \text { else } t_{3} \longrightarrow t_{2} \tag{E-PT}\\
\text { perhaps maybe then } t_{2} \text { else } t_{3} \longrightarrow t_{2} \tag{E-PM}\\
\text { perhaps false then } t_{2} \text { else } t_{3} \longrightarrow t_{3} \tag{E-PF}\\
\text { definitely true then } t_{2} \text { else } t_{3} \longrightarrow t_{2} \tag{E-DT}\\
\text { definitely maybe then } t_{2} \text { else } t_{3} \longrightarrow t_{3} \tag{E-DM}\\
\text { definitely false then } t_{2} \text { else } t_{3} \longrightarrow t_{3} \tag{E-DF}
\end{gather*}
$$

1. (15 points)
(a) State the structural induction principle for the syntax of this language.

Answer: For all terms $t, P(t)$ is true if and only if

- P (true), P (false), and P (maybe) are true
- $P\left(\right.$ perhaps t_{1} then t_{2} else $\left.t_{3}\right)$ is true given $P\left(t_{1}\right), P\left(t_{2}\right)$ and $P\left(t_{3}\right)$.
- $P\left(\right.$ definitely t_{1} then t_{2} else $\left.t_{3}\right)$ is true given $P\left(t_{1}\right), P\left(t_{2}\right)$ and $P\left(t_{3}\right)$.
(b) Prove by structural induction, the following statement: For all t, either t is a value or $t \longrightarrow$ t^{\prime}. Note: If two cases of this proof are extremely similar, you may say that the second case is analogous to the first, instead of writing the case out in full.
Answer: The property that we would like to show is $P(t)=$ either t is a value or $t \longrightarrow t^{\prime}$.
- Showing that the property is true when t is true, false or maybe is trivial, because t is a value in each of these cases.
- Suppose t is perhaps t_{1} then t_{2} else t_{3}. By induction, we know that either t_{1} is a value, or $t_{1} \longrightarrow t_{1}^{\prime}$.
- If t_{1} is true then $t \longrightarrow t_{2}$ by E-PT.
- If t_{1} is false then $t \longrightarrow t_{3}$ by E-PF.
- If t_{1} is maybe then $t \longrightarrow t_{2}$ by E-PM.
- If $t_{1} \longrightarrow t_{1}^{\prime}$ then $t \longrightarrow$ perhaps t_{1}^{\prime} then t_{2} else t_{3} by E-P.
- Suppose t is definitely t_{1} then t_{2} else t_{3}. This case is analogous to the previous.

2. (4 points) We can define a new term form and $t_{1} t_{2}$ with the following operational semantics rules:

$$
\begin{gathered}
\text { and true } v \longrightarrow \mathrm{v} \\
\text { and maybe } \mathrm{true} \longrightarrow \text { maybe } \\
\text { and maybe maybe } \longrightarrow \text { maybe } \\
\text { and maybe false } \longrightarrow \text { false } \\
\text { and false } v \longrightarrow \text { false } \\
\frac{t_{1} \longrightarrow t_{1}^{\prime}}{\text { and } t_{1} t_{2} \longrightarrow \text { and } t_{1}^{\prime} t_{2}} \\
\frac{t_{2} \longrightarrow t_{2}^{\prime}}{\text { and } v t_{2} \longrightarrow \text { and } v t_{2}^{\prime}}
\end{gathered}
$$

However, this term is definable using the existing constructs of the language. What is its definition?

```
and t}\mp@subsup{\mp@code{1}}{1}{}\mp@subsup{\textrm{t}}{2}{}
```

Answer: definitely t_{1} then t_{2} else (perhaps t_{2} then $t 1$ else false).
3. (8 points) We can also encode this language into the untyped lambda calculus. Here is part of the encoding, fill in the missing pieces in the simplest way possible.

```
\(\operatorname{comp}(\) true \()=\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \lambda \mathrm{z} \cdot \mathrm{x}(\lambda \mathrm{w} \cdot \mathrm{w})\)
\(\operatorname{comp}(\) false \()=\)
```

\qquad

```
Answer: \(\lambda_{x} . \lambda_{y} . \lambda z . z(\lambda w . w)\)
\(\operatorname{comp}(\) maybe \()=\)
    —
Answer: \(\lambda_{x} \cdot \lambda y \cdot \lambda z \cdot y(\lambda w . w)\)
\(\operatorname{comp}\left(\right.\) perhaps \(\mathrm{t}_{1}\) then \(\mathrm{t}_{2}\) else \(\left.\mathrm{t}_{3}\right)=\operatorname{comp}\left(\mathrm{t}_{1}\right)\left(\lambda_{\mathrm{w}} \cdot \operatorname{comp}\left(t_{2}\right)\right)\left(\lambda_{\mathrm{w}} \cdot \operatorname{comp}\left(t_{2}\right)\right)\left(\lambda_{\mathrm{w}} \cdot \operatorname{comp}\left(t_{3}\right)\right)\)
\(\operatorname{comp}\left(\right.\) definitely \(\mathrm{t}_{1}\) then \(\mathrm{t}_{2}\) else \(\left.\mathrm{t}_{3}\right)=\)
```

Answer: $\operatorname{comp}\left(t_{1}\right)\left(\lambda_{w} \cdot \operatorname{comp}\left(t_{2}\right)\right)\left(\lambda_{w} \cdot \operatorname{comp}\left(t_{3}\right)\right)\left(\lambda_{w} \cdot \operatorname{comp}\left(t_{3}\right)\right)$
4. (8 points) The following $\mathrm{O}^{\prime} \mathrm{Caml}$ definitions implement the small-step evaluation relation almost correctly, but there are several mistakes or omissions. Change the code below to repair these mistakes.

```
type term = TmTrue | TmFalse | TmMaybe
    | TmPerhaps of term * term * term
    | TmDefinitely of term * term * term
let rec ss t = match t with
    TmPerhaps(t1,t2,t3) }
        (match t1 with
            TmTrue }->\mathrm{ ss t2
                | TmMaybe }->\mathrm{ ss t2
                | TmFalse }->\mathrm{ ss t3
            | _ -> TmPerhaps(ss t11, ss t2, t3))
    | TmDefinitely(TmTrue,t2,t3) }->\mathrm{ ss t2
    | TmDefinitely(TmFalse,t2,t3) -> ss t3
    | TmDefinitely(t1,t2,t3) -> TmPerhaps(ss t1, t2, t3)
    TmTrue }->\mathrm{ ss TmTrue
    |mFalse }->\mathrm{ TmFalse
```

Answer:

- Cases for perhaps true, perhaps false, perhaps maybe and definitely true shouldn't call ss recursively. Also, the last case for perhaps shouldn't call ss recursively for $t 2$.
- Last case for perhaps should say $t 1$ instead of $t 11$.
- Missing case for definitely maybe.
- Congruence rule for definitely goes to perhaps.
- Because this is a single step semantics, there shouldn't be cases for true and false, these are values. For these terms, an exception should be raised.

Untyped lambda-calculus

For each of the following pairs of untyped lambda-terms, answer the following three questions:
(a) What are their normal forms? If a term does not have a normal form, write none.
(b) If they have normal forms, are these normal forms alpha-equivalent? If they are alpha-equivalent write yes, if they are not write no, if at least one term does not have a normal form write not applicable.
(c) Are these terms behaviorally equivalent? Write yes or no.

Recall the following definitions of observational and behavioral equivalence from lecture notes:

- Two terms s and t are observationally equivalent iff either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both are divergent.
- Terms s and t are behaviorally equivalent iff, for every finite sequence of values $v_{1}, \ldots v_{n}$, the applications

$$
s v_{1} \ldots v_{n}
$$

and

$$
t v_{1} \ldots v_{n}
$$

are observationally equivalent.
5. (6 points) $(\lambda \mathrm{x} . \mathrm{xx})(\lambda \mathrm{x} . \mathrm{x} x)$ and $(\lambda \mathrm{x} . \mathrm{xx} \mathrm{x})(\lambda \mathrm{x} . \mathrm{xxx})$.
(a) Answer: none and none
(b) Answer: not applicable
(c) Answer: yes
6. (6 points) ($\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \mathrm{x}$) and ($\left.\lambda \mathrm{x} \cdot \mathrm{\lambda}_{\mathrm{y}} \cdot\left(\lambda_{\mathrm{w}} \cdot \mathrm{w}\right) \mathrm{x}\right)$.
(a) Answer: $(\lambda x . \lambda y . x)$ and $(\lambda x . \lambda y .(\lambda w . w) x)$
(b) Answer: no
(c) Answer: yes
7. (6 points) ($\left.\lambda \mathrm{x} \cdot \mathrm{\lambda}_{\mathrm{y}} \cdot \mathrm{x}\right)(\lambda \mathrm{z} \cdot \mathrm{y})$ and ($\lambda \mathrm{x} \cdot \mathrm{\lambda}_{\mathrm{y}} \cdot \mathrm{x}$) ($\lambda \mathrm{x} \cdot \mathrm{w}$).
(a) Answer: $\lambda_{w} \cdot \lambda z \cdot y$ and $\lambda_{y} \cdot \lambda x \cdot w$
(b) Answer: no
(c) Answer: yes

Functional Programming

8. (9 points) The following is a slightly different encoding of natural numbers in the untyped lambda calculus.
```
\(s_{0}=\lambda s . \lambda z . z\)
\(s_{1}=\lambda s . \lambda z . s s_{0} z\)
\(\mathrm{s}_{2}=\lambda \mathrm{s} . \lambda \mathrm{z} . \mathrm{s} \mathrm{s}_{1}\left(\mathrm{~s} \mathrm{~s}_{0} \mathrm{z}\right)\)
\(s_{3}=\lambda s . \lambda z . s_{2}\left(s_{1}\left(s s_{0} z\right)\right)\)
\(\operatorname{scc}=\lambda n . \lambda s . \lambda z . s n(n s z)\)
```

(a) Define the predecessor function prd for this encoding, using the simplest term you can.

Answer: prd=$=\lambda n . n(\lambda m . \lambda r . m) s o$
(b) Define the addition function plus for this encoding, using the simplest term you can.

Answer: plus $=\lambda n . \lambda m . n(\lambda x . s c c) m$
or the same definition for plus as for Church numerals:
plus $=\lambda n . \lambda m . \lambda s . \lambda z . n s(m s z)$
(c) Define the function sumupto that, given the encoding of a number m, calculates the sum of all the numbers less than or equal to m. Use the simplest term you can, and do not use fix.
Answer: sumupto $=\lambda m$. mplus m is the simplest answer.
Several people gave a function that sums all of the numbers less than m, such as $\lambda m . m p l u s s_{0}$. Partial credit was awarded for this function.

Typed arithmetic expressions

The full definition of the language of typed arithmetic and boolean expressions is reproduced, for your reference, on page 10 .
9. (6 points) Suppose we add the following two new rules to the evaluation relation:

```
pred true }\longrightarrow\mathrm{ pred false
pred false \longrightarrow pred true
```

Which of the following properties will remain true in the presence of this rule? For each one, circle either "remains true" or else "becomes false." If a property becomes false, also write down a counterexample to the property.
(a) Termination of evaluation (for every term t there is some normal form t^{\prime} such that $t \longrightarrow{ }^{*} t^{\prime}$)
remains true becomes false, because

Answer: Becomes false. pred true \longrightarrow pred false \longrightarrow pred true ...
(b) Progress (if t is well typed, then either t is a value or else $t \longrightarrow t^{\prime}$ for some t^{\prime})
remains true becomes false, because

Answer: Remains true
(c) Preservation (if t has type T and $t \longrightarrow t^{\prime}$, then t^{\prime} also has type T)
remains true becomes false, because
Answer: Remains true
10. (6 points) Suppose, instead, that we add this new rule to the typing relation:

$$
\frac{t_{2}: \text { Nat }}{\text { if true then } t_{2} \text { else } t_{3}: \text { Nat }}
$$

Which of the following properties remains true? (Answer in the same style as the previous question.)
(a) Termination of evaluation (for every term t there is some normal form t^{\prime} such that $t \longrightarrow{ }^{*} t^{\prime}$)
remains true becomes false, because

Answer: Remains true
(b) Progress (if t is well typed, then either t is a value or else $t \longrightarrow t^{\prime}$ for some t^{\prime})
remains true becomes false, because

Answer: Remains true

(c) Preservation (if t has type T and $t \longrightarrow t^{\prime}$, then t^{\prime} also has type T)
remains true becomes false, because
11. (6 points) Suppose, instead, that we add this new rule to the typing relation:

$$
\frac{t: B o o l}{\text { succ } t: B o o l}
$$

Which of the following properties remains true? (Answer in the same style as the previous question.)
(a) Termination of evaluation (for every term t there is some normal form t^{\prime} such that $t \longrightarrow{ }^{*} t^{\prime}$)
remains true becomes false, because

Answer: Remains true
(b) Progress (if t is well typed, then either t is a value or else $t \longrightarrow t^{\prime}$ for some t^{\prime})
remains true becomes false, because
Answer: Becomes false. succ true is well-typed, but stuck.
(c) Preservation (if t has type T and $t \longrightarrow t^{\prime}$, then t^{\prime} also has type T)
remains true becomes false, because
Answer: Remains true

For reference: Boolean and arithmetic expressions

Syntax

```
t ::=
    true
    false
    ift thentelset
    0
    succt
    predt
    iszerot
v ::=
    true
    false
    nv
nv ::=
    0
    succ nv
T ::= 
    Nat
```


terms

``` constant true constant false conditional constant zero successor predecessor zero test
values true value false value numeric value
numeric values zero value successor value
types
type of booleans
type of numbers
```

Evaluation

$$
\begin{align*}
& \text { if true then } t_{2} \text { else } t_{3} \longrightarrow t_{2} \tag{E-IFTRUE}\\
& \text { if false then } t_{2} \text { else } t_{3} \longrightarrow t_{3} \tag{E-IFFALSE}\\
& \frac{t_{1} \longrightarrow t_{1}^{\prime}}{\text { if } t_{1} \text { then } t_{2} \text { else } t_{3} \longrightarrow \text { if } t_{1}^{\prime} \text { then } t_{2} \text { else } t_{3}} \tag{E-IF}\\
& \frac{t_{1} \longrightarrow t_{1}^{\prime}}{\text { succ } t_{1} \longrightarrow \operatorname{succ} t_{1}^{\prime}} \\
& \text { pred } 0 \longrightarrow 0 \\
& \text { pred (succ } \mathrm{nv}_{1} \text {) } \longrightarrow \mathrm{nv}_{1} \\
& \frac{t_{1} \longrightarrow t_{1}^{\prime}}{\text { pred } t_{1} \longrightarrow \text { pred } t_{1}^{\prime}} \tag{E-PRED}\\
& \text { iszero } 0 \longrightarrow \text { true } \\
& \text { iszero (succ nv1) } \longrightarrow \text { false } \\
& \frac{t_{1} \longrightarrow t_{1}^{\prime}}{\text { iszerot }{ }_{1} \longrightarrow \text { iszero } t_{1}^{\prime}}
\end{align*}
$$

(E-SUCC)
(E-PredZERO)
(E-PredSucc)
(E-IsZEROZERO)
(E-IsZEROSUCC)
(E-IsZERO)
continued on next page...

Typing

$$
\begin{gather*}
\text { true : Bool } \\
\text { false : Bool } \\
\frac{t_{1}: \text { Bool } t_{2}: T \quad t_{3}: T}{\text { if }_{1} \text { then }_{2} \text { else } t_{3}: T} \tag{T-IF}\\
0: \text { Nat } \\
\frac{t_{1}: \text { Nat }}{\operatorname{succ}^{t_{1}: N a t}} \\
\frac{t_{1}: \text { Nat }}{{\text { pred } t_{1}: N a t}^{\text {iszero } t_{1}: \text { Bool }}} \\
\frac{t_{1}: \text { Nat }}{}
\end{gather*}
$$

For reference: Untyped lambda calculus

Syntax
t ::=
x
$\lambda \mathrm{x} . \mathrm{t}$
t t
v ::=
$\lambda x: T . t$

> terms
> variable abstraction
> application
values
abstraction value

Evaluation

$$
\begin{align*}
& \frac{t_{1} \longrightarrow t_{1}^{\prime}}{t_{1} t_{2} \longrightarrow t_{1}^{\prime} t_{2}} \tag{E-App1}\\
& \frac{t_{2} \longrightarrow t_{2}^{\prime}}{v_{1} t_{2} \longrightarrow v_{1} t_{2}^{\prime}} \tag{E-APP2}\\
& \left(\lambda \mathrm{x} . \mathrm{t}_{12}\right) \mathrm{v}_{2} \longrightarrow\left[\mathrm{x} \mapsto \mathrm{v}_{2}\right] \mathrm{t}_{12}
\end{align*}
$$

(E-AppAbs)

