CIS 500 — Software Foundations

Midterm II Answer key November 17, 2004

Simply typed lambda-calculus

The following questions refer to the simply typed lambda-calculus with booleans and error. The syntax, typing, and evaluation rules for this system are given on page 1 of the companion handout.

- 1. (10 points) Write down the types of each of the following terms. If a term can be given many types, you should write down the *smallest* one. If the term does not type check, write NONE.
 - (a) $\lambda x: Bool \rightarrow Bool \rightarrow Bool. x true$

Type: ______ Answer: (Bool \rightarrow Bool \rightarrow Bool) \rightarrow Bool \rightarrow Bool

(b) λx:Bool.xx

Туре: _____

Answer: NONE. There is no type that can be given to x to allow this term to type check.

(c) $\lambda x: Bool \rightarrow Bool.$ error x

Type: ______ Answer: $(Bool \rightarrow Bool) \rightarrow Bool$

(d) $\lambda x: Bool \rightarrow Bool. \lambda y: Bool. x y error$

Туре: _____

Answer: NONE. x y has type Bool and may not be applied.

(e) try (λx :Bool. if x then error else true) with false

Туре: _____

Answer: NONE. Both parts of a try term must have the same type.

Grading scheme: Binary. Two points per answer.

- 2. (10 points) Which of the following functions *could* evaluate to error when applied to a single value of the appropriate type? Circle YES if there is some argument that could produce error and NO otherwise.
 - (a) λx :Bool. if x then true else false

Answer: NO, both true and false arguments evaluate without error.

(b) λx :Bool. if x then true else error

Answer: YES, when applied to false the result is error.

(c) λx :Bool. λy :Bool. if x then y else error

YES

YES

YES

NO

NO

NO

Answer: NO, when applied to a single argument, the result is a lambda term.

(d) $\lambda x: Bool \rightarrow Bool.$ if (x true) then true else false

YES

NO

Answer: YES, when applied to λy : Bool. error.

(e) $\lambda x:Bool \rightarrow Bool.$ if true then true else (x false)

YES

NO

Answer: NO, returns true when applied to any value.

Grading scheme: Binary. Two points per answer.

3. (10 points) Suppose this language (the simply-typed lambda calculus with booleans and error, from page 1 of the companion handout) were extended with tuples, using the following syntax, evaluation and typing rules:

$$\begin{aligned} t &:= \dots \quad terms: \\ & \{t_i^{i \in I..n}\} \quad tuple \\ & t.i \quad projection \end{aligned}$$
$$v &:= \dots \quad values: \\ & \{v_i^{i \in I..n}\} \quad tuple value \end{aligned}$$
$$T &:= \dots \quad types: \\ & \{T_i^{i \in I..n}\} \quad tuple type \end{aligned}$$
$$\{v_i^{i \in I..n}\} \cdot j \longrightarrow v_j \qquad (E-PROJTUPLE) \\ & \frac{t_1 \longrightarrow t'_1}{t_1.i \longrightarrow t'_1.i} \qquad (E-PROJ) \\ & \frac{t_j \longrightarrow t'_j}{\{v_i^{i \in I..j-I}, t_j, t_k^{k \in j+I..n}\}} \qquad (E-TUPLE) \end{aligned}$$
$$\underbrace{for each i \ \Gamma \vdash t_i : T_i}{\Gamma \vdash \{t_i^{i \in I..n}\} : \{T_i^{i \in I..n}\}} \qquad (T-TUPLE) \end{aligned}$$

$$\frac{\Gamma \vdash t_1 : \{T_i^{i \in I..n}\}}{\Gamma \vdash t_1.j : T_j}$$
(T-PROJ)

(a) What additional rules must be added to the operational semantics so that the Progress Theorem is true? Recall that the Progress Theorem states: If Ø ⊢ t : T then either t is a value, t is error, or there exists a t' such that t → t'.

Answer:

$$error.i \longrightarrow error$$
(E-PROJERROR)
{v_i ^{i∈1..j-1}, error, t_k ^{k∈j+1..n}} → error (E-TUPLEERROR)

Grading scheme: 2 points per rule. Partial credit given for small errors such as

$$\frac{t_1 \longrightarrow \text{error}}{t_1.i \longrightarrow \text{error}}$$

(b) Complete the inversion lemma for tuples and projections in this calculus. If $\Gamma \vdash \{t_i^{i \in I..n}\}$: R then ... *Answer:* $R = \{T_i^{i \in I..n}\}$ and for each $i, \Gamma \vdash t_i : T_i$.

If $\Gamma \vdash t.j$: R then ... Answer: $\Gamma \vdash t$: { $T_i^{i \in I..n}$ } and $R = T_j$ for some $1 \le j \le n$.

Grading scheme: 2 points each.

 (c) Complete the canonical forms lemma for tuples in this calculus. If v is a closed value of type {T_i ^{i∈1..n}} then ... Answer: v is a tuple of the form {v_i ^{i∈1..n}}

Grading scheme: 1 point for general form of a canonical forms lemma. 1 point for stating the correct lemma exactly. For example, v is a tuple of the form { $t_i^{i \in 1..n}$ } was worth 1 point.

4. (9 points) In the simply-typed lambda calculus with error, booleans, let and tuples, we can encode binary sums as a derived form.

The following similar encodings are *incorrect*. Concisely describe why, using one or two sentences.

(a) inl t₁ as T₁+T₂ $\stackrel{\text{def}}{=}$ {true, t₁, error} inr t₂ as T₁+T₂ $\stackrel{\text{def}}{=}$ {false, error, t₂} case t of inl x₁ \Rightarrow t₁ | inr x₂ \Rightarrow t₂ $\stackrel{\text{def}}{=}$ let y = t in if y.1 then [x₁ \mapsto y.2] t₁ else [x₂ \mapsto y.3] t₂

Answer: This encoding immediately evaluates to error, so it is impossible to determine whether the first component of the tuple is true or false.

```
(b) inl t<sub>1</sub> as T<sub>1</sub>+T<sub>2</sub> \stackrel{\text{def}}{=} {true, t<sub>1</sub>, (\lambdaa:Bool. error)}
inr t<sub>2</sub> as T<sub>1</sub>+T<sub>2</sub> \stackrel{\text{def}}{=} {false, (\lambdaa:Bool. error), t<sub>2</sub>}
case t of inl x<sub>1</sub> \Rightarrow t<sub>1</sub> | inr x<sub>2</sub> \Rightarrow t<sub>2</sub> \stackrel{\text{def}}{=}
let y = t in
if y.1 then [x<sub>1</sub> \mapsto y.2] t<sub>1</sub>
else [x<sub>2</sub> \mapsto y.3] t<sub>2</sub>
```

Answer: The encodings of inl and inr don't produce terms of the same type.

```
(c) inl t<sub>1</sub> as T<sub>1</sub>+T<sub>2</sub> \stackrel{\text{def}}{=} {true, (\lambdaa:Bool. t<sub>1</sub>), (\lambdaa:Bool. error)}
inl t<sub>2</sub> as T<sub>1</sub>+T<sub>2</sub> \stackrel{\text{def}}{=} {false, (\lambdaa:Bool. error), (\lambdaa:Bool.t<sub>2</sub>)}
case t of inl x<sub>1</sub> \Rightarrow t<sub>1</sub> | inr x<sub>2</sub> \Rightarrow t<sub>2</sub> \stackrel{\text{def}}{=}
let y = t in
if y.1 then [x<sub>1</sub> \mapsto (y.2 true)] t<sub>1</sub>
else [x<sub>2</sub> \mapsto (y.3 true)] t<sub>2</sub>
```

Answer: The expression t_1 is only evaluated when the sum is examined, not when it is created. For example inlerror as Bool + Bool should produce an error, but would not with this encoding.

Grading scheme: 3 points each.

References

The following questions refer to the simply typed lambda-calculus with references (and Unit, Nat, Bool, and let). The syntax, typing, and evaluation rules for this system are given on page 3 of the companion handout.

5. (12 points) Evaluating the expression

```
let x = ref (\lambdan:Nat. 0) in
let y = ref (\lambdan:Nat. (!x) n) in
let z = ref (\lambdan:Nat. (!y) n) in
(!z) 3
```

beginning in an empty store yields:

Fill in the resulting values and final stores (when started with an empty store) for the following terms:

```
(a)
       let x = ref 0 in
       let y = ref x in
       (!y) := 3;
       х
    Answer:
     Result: 11
                                Store: l_1 \mapsto 3
                                         l_2 \mapsto l_1
(b)
     let x = ref 0 in
      let f = ref (\lambda w:Ref Nat. w:= succ (!x)) in
      let g = \lambda a:Nat. (x := succ(a); ref a) in
          (!f) (g (!x))
    Answer:
     Result: unit
                                    Store: l_1 \mapsto 1
                                            l_2 \mapsto \lambda w: Ref Nat. w:= succ (!l_1)
                                            l_3 \mapsto 2
     let f = ref (\lambdan:Nat. ref 500) in
(c)
      f := \lambda n:Nat. if iszero(n) then ref 0
                                        else ref ( succ (!((!f) (pred n)) ));
      (!f) 3
    Answer:
     Result: 1<sub>5</sub>
                                Store: l_1 \mapsto \lambda n: Nat. if iszero(n) then (ref 0)
                                                 else ref (succ (!((!l<sub>1</sub>)(pred n))))
                                         l_2 \mapsto 0
                                         l_3 \mapsto l
                                         l_4 \mapsto 2
                                         l_5 \mapsto 3
```

Grading scheme: One point for the result, three points for the store.

6. (8 points) Recall that the preservation theorem for the simply-typed lambda-calculus with references is stated as follows:

THEOREM [Preservation]: If $\Gamma \mid \Sigma \vdash t : T$ and $\Gamma \mid \Sigma \vdash \mu$ and $t \mid \mu \longrightarrow t' \mid \mu'$ then, for some $\Sigma' \supseteq \Sigma$, $\Gamma \mid \Sigma' \vdash t' : T$ and $\Gamma \mid \Sigma' \vdash \mu'$.

This theorem must be stated very carefully. Small changes to it can easily make it incorrect. For each of the FALSE variants of the statement shown below, write down a counter-example that demonstrates why that statement is incorrect.

For example, the statement:

If $\Gamma \mid \Sigma \vdash t$: T and $\Gamma \mid \Sigma \vdash \mu$ and t $\mid \mu \longrightarrow t' \mid \mu'$ then $\Gamma \mid \Sigma \vdash t'$: T and $\Gamma \mid \Sigma \vdash \mu'$. is false because although $\emptyset \mid \emptyset \vdash ref 0$: Ref Nat and $\emptyset \mid \emptyset \vdash \emptyset$ and ref $0 \mid \emptyset \longrightarrow l \mid l \mapsto 0$, it is not the case that $\emptyset \mid \emptyset \vdash l$: Ref Nat.

- (a) If $\Gamma \mid \Sigma \vdash t$: T and $t \mid \mu \longrightarrow t' \mid \mu'$ then, for some $\Sigma' \supseteq \Sigma$, $\Gamma \mid \Sigma' \vdash t'$: T and $\Gamma \mid \Sigma' \vdash \mu'$. *Answer:* $\emptyset \mid l: Nat \vdash !l: Nat, and !l \mid l = true \longrightarrow true \mid l = true.$ *However, there is no* $\Sigma' \supseteq l: Nat$ *such that* $\emptyset \mid \Sigma' \vdash true: Nat$
- (b) If $\Gamma \mid \Sigma \vdash t$: T and $\Gamma \mid \Sigma \vdash \mu$ and t $\mid \mu \longrightarrow t' \mid \mu'$ then, for all $\Sigma' \supseteq \Sigma$, $\Gamma \mid \Sigma' \vdash t'$: T and $\Gamma \mid \Sigma' \vdash \mu'$.

Answer: $\emptyset \mid \emptyset \vdash ref 0$: Ref Nat, and $\emptyset \mid \emptyset \vdash \emptyset$ and ref $0 \mid \emptyset \longrightarrow l \mid l = Ref Nat$.

However, it is not the case that an arbitrary extension Σ of the empty context \emptyset will allow the derivation of $\emptyset \mid \Sigma \vdash l$: Ref Nat, only those extensions that map l to Nat.

Grading scheme: Each part worth four points. 0 pts for a blank answer, 1 point if realized the statement was false, 2 points if realized a counterexample was needed, 3 points if the counterexample was almost correct and 4 points for producing a valid counterexample.

7. (21 points) Intuitively, type soundness for a language states that if a closed term is well-typed and evaluates (using multi-step evaluation) to a normal form, that normal form will be a value. In other words, closed well-typed terms will not get stuck. We can state this idea precisely for the language with references in the following manner:

THEOREM [Type Soundness]: If $\emptyset \mid \Sigma \vdash t : T$ and $\emptyset \mid \Sigma \vdash \mu$ and $t \mid \mu \longrightarrow^* t' \mid \mu'$ and $t' \mid \mu' \not \longrightarrow$, then t' is a value.

Recall also to the progress theorem for the simply-typed lambda calculus with references:

THEOREM [Progress]: If $\emptyset \mid \Sigma \vdash t$: T and $\emptyset \mid \Sigma \vdash \mu$ then either t is a value, or else, for any μ such that $\emptyset \mid \Sigma \vdash \mu$, there is some term t' and store μ ' such that t $\mid \mu \longrightarrow t' \mid \mu'$.

(a) Given the following definition of multi-step evaluation t | µ →* t' | µ', prove type soundness by induction on this derivation using the progress and preservation theorems. Note, your proof must be concise as well as correct. Extraneous information not necessary for the proof (whether true or false) will be counted against you.

$$\frac{t \mid \mu \longrightarrow^{*} t \mid \mu}{t \mid \mu \longrightarrow^{*} t' \mid \mu' \longrightarrow^{*} t'' \mid \mu''} (EV-DONE)$$

$$\frac{t \mid \mu \longrightarrow t' \mid \mu' \longrightarrow^{*} t'' \mid \mu''}{t \mid \mu \longrightarrow^{*} t'' \mid \mu''} (EV-STEP)$$

Answer: Proof is by induction on the derivation of $t \mid \mu \longrightarrow^* t' \mid \mu'$. In each case we are trying to show that t' is a value.

- case [EV-Done] Suppose $t \mid \mu \longrightarrow^* t \mid \mu$. In this case t' = t and $\mu' = \mu$. By the progress theorem, either t is a value or there is some t' and μ' such that $t \mid \mu \longrightarrow t' \mid \mu'$. However, we know that $t \mid \mu \not\rightarrow$, so t must be a value.
- *case* [EV-Step] Suppose that $t \mid \mu \longrightarrow^* t'' \mid \mu''$, where $t \mid \mu \longrightarrow t_1 \mid \mu_1$ and $t_1 \mid \mu_1 \longrightarrow^* t'' \mid \mu''$. In this case, t'=t'' and $\mu'=\mu''$.

By the preservation theorem, we know that for some $\Sigma' \supseteq \Sigma$, $\emptyset \mid \Sigma' \vdash t_1 : T$ and $\emptyset \mid \Sigma' \vdash \mu_1$. Because we know that t_1 and μ_1 are well typed, we may apply induction and conclude that t'' is a value.

Grading scheme: The proof was worth 12 points. Roughly, 3 of those points were for setting up the cases correctly, 3 points for the EV-DONE case and 6 points for the EV-STEP case. Points were deducted for using the wrong lemma in the wrong case, for using the induction hypothesis incorrectly, for extraneous information and for minor mistakes or ommissions. No points were awarded for answers that tried to prove the wrong theorem (such as preservation or progress) and no points were awarded for students who tried to prove the lemma by induction on the the typing relation or single-step evaluation relation. (Although it may be possible to develop a convoluted proof in this manner, students who tried this route quickly lost track of what they were trying to prove.)

- (b) Suppose we eliminated the typing rule T-LOC from the type system of the simply typed lambdacalculus with references.
 - i. Is the preservation theorem still true? If so, give a *short* explanation why. If not, write down a counter-example.

Answer: No, because the term ref 0 is well-typed, but it steps to a location l that cannot be typed without T-LOC.

ii. Is the progress theorem still true? If so, give a *short* explanation why. If not, write down a counter-example.

Answer: Yes. Eliminating typing rules does not change the progress theorem. Although fewer closed terms type check, those that do (and are not values) must still step by the progress theorem of the original language.

iii. Does type soundness still hold? If so, give a *short* explanation why. If not, write down a counter-example.

Answer: Yes. The above proof is not the only way to prove type soundness. In this case, any term that type checks in the system without T-LOC also type checks in the original system. Type soundness of the original system specifies that the term must evaluate to a value, which is all that is required for type soundness to hold for the language without T-LOC. (Note that the value may not be typable without T-LOC, but that is not required by the type soundness theorem.)

Grading scheme: 1 point for the answer and 2 points for the counterexample or reason. Partial credit awarded for part iii if part i was wrong and the reason read that "since progress and preservation are still true, type soundness is still true."

Companion handout

Full definitions of the systems used in the exam

Syntax		
t ::=		terms
	error	run-time error
	true	constant true
	false	constant false
	if t then t else t	conditional
	х	variable
	λx:T.t	abstraction
	tt	application
v ::=		values
	true	true value
	false	false value
	λx:T.t	abstraction value
т ::=		types
	$T \rightarrow T$	type of functions
	Bool	type of booleans
Г ::=		contexts
	Ø	empty context
	Г, х:т	term variable binding
Evaluation		$\texttt{t} \longrightarrow \texttt{t}'$
	if true then t_2 else $t_3 \longrightarrow t_2$	(E-IFTRUE)
	$\texttt{if false then } \texttt{t}_2 \texttt{ else } \texttt{t}_3 \longrightarrow \texttt{t}_3$	(E-IFFALSE)
	$\texttt{t}_1 \longrightarrow \texttt{t}_1'$	(E-IF)
	$\texttt{ift}_1 \texttt{ thent}_2 \texttt{ elset}_3 \longrightarrow \texttt{ift}_1' \texttt{ thent}_2 \texttt{ elset}_3$	

 $\texttt{if error then} \, \texttt{t}_2 \, \texttt{else} \, \texttt{t}_3 \longrightarrow \texttt{error}$

 $\begin{array}{c} {\rm error} \ t_2 \longrightarrow {\rm error} \\ v_1 \ {\rm error} \ \longrightarrow {\rm error} \end{array}$

 $\frac{\texttt{t}_1 \longrightarrow \texttt{t}_1'}{\texttt{t}_1 \texttt{t}_2 \longrightarrow \texttt{t}_1' \texttt{t}_2}$

 $\frac{\texttt{t}_2 \longrightarrow \texttt{t}_2'}{\texttt{v}_1 \, \texttt{t}_2 \longrightarrow \texttt{v}_1 \, \texttt{t}_2'}$

 $(\lambda x: T_{11}, t_{12}) v_2 \longrightarrow [x \mapsto v_2] t_{12}$

(E-IFERR)

(E-APP1)

(E-APP2)

(E-APPABS)

(E-APPERR1)

(E-APPERR2)

Simply typed lambda calculus with error (and Bool)

Typing

(T-Error)

$$\frac{\mathbf{x}:\mathbf{T}\in\Gamma}{\Gamma\vdash\mathbf{x}:\mathbf{T}}\tag{T-VAR}$$

$$\frac{\Gamma, \mathbf{x}: \mathbf{T}_1 \vdash \mathbf{t}_2 : \mathbf{T}_2}{\Gamma \vdash \lambda \mathbf{x}: \mathbf{T}_1 \cdot \mathbf{t}_2 : \mathbf{T}_1 \to \mathbf{T}_2}$$
(T-ABS)

$$\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \qquad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 t_2 : T_{12}}$$
(T-APP)

$$\Gamma \vdash false : Bool$$
 (T-FALSE)

$$\frac{\Gamma \vdash t_1 : \text{Bool} \quad \Gamma \vdash t_2 : T \quad \Gamma \vdash t_3 : T}{\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T}$$
(T-IF)

Simply typed lambda calculus with references (and Unit, Nat, Bool, and let)

Syntax	
t ::=	terms
х	variable
let x=t in t	let binding
unit	constant unit
λx:T.t	abstraction
tt	application
reft	reference creation
	dereference
t:=t	assignment
l	store location
true	constant true
false	constant file
if t then t else t	conditional
0	constant zero
succt	successor
pred t	predecessor zero test
iszerot	zero test
v ::=	values
unit	constant unit
λx:T.t	abstraction value
l	store location
true	true value
false	false value
nv	numeric value
т ::=	types
Unit	unit type
$T \rightarrow T$	type of functions
RefT	type of reference cells
Bool	type of booleans
Nat	type of natural numbers
hat	type of futural future for
μ ::=	stores
Ø	empty store
$\mu, \mathfrak{l}=\mathtt{v}$	location binding
Г ::=	contexts
Ø	empty context
Г, х:т	term variable binding
Σ ::=	store typings
\emptyset	empty store typing
$\Sigma, l:T$	location typing
	counton typing

nv ::= 0 succ nv

Evaluation

numeric values zero value successor value

 $\texttt{t}\mid \mu \longrightarrow \texttt{t}'\mid \mu'$ let $x=v_1$ in $t_2 \mid \mu \longrightarrow [x \mapsto v_1]t_2 \mid \mu$ (E-LETV) $\frac{ \texttt{t}_1 \mid \mu \longrightarrow \texttt{t}_1' \mid \mu'}{\texttt{let } \texttt{x=t}_1 \texttt{ in } \texttt{t}_2 \mid \mu \longrightarrow \texttt{let } \texttt{x=t}_1' \texttt{ in } \texttt{t}_2 \mid \mu'}$ (E-LET) $\frac{\mathsf{t}_1 \mid \boldsymbol{\mu} \longrightarrow \mathsf{t}'_1 \mid \boldsymbol{\mu}'}{\mathsf{t}_1 \; \mathsf{t}_2 \mid \boldsymbol{\mu} \longrightarrow \mathsf{t}'_1 \; \mathsf{t}_2 \mid \boldsymbol{\mu}'}$ (E-APP1) $\frac{\mathsf{t}_2 \mid \boldsymbol{\mu} \longrightarrow \mathsf{t}'_2 \mid \boldsymbol{\mu}'}{\mathsf{v}_1 \; \mathsf{t}_2 \mid \boldsymbol{\mu} \longrightarrow \mathsf{v}_1 \; \mathsf{t}'_2 \mid \boldsymbol{\mu}'}$ (E-APP2) $(\lambda x:T_{11},t_{12}) v_2 \mid \mu \longrightarrow [x \mapsto v_2]t_{12} \mid \mu$ (E-APPABS) $\frac{l \notin \textit{dom}(\mu)}{\texttt{ref } v_1 \mid \mu \longrightarrow l \mid (\mu, l \mapsto v_1)}$ (E-REFV) $\frac{\mathtt{t}_1 \mid \mu \longrightarrow \mathtt{t}'_1 \mid \mu'}{\mathtt{reft}_1 \mid \mu \longrightarrow \mathtt{reft}'_1 \mid \mu'}$ (E-REF) $\frac{\mu(l) = \mathbf{v}}{|l| \mu \longrightarrow \mathbf{v} \mid \mu}$ (E-DEREFLOC) $\frac{\mathtt{t}_1 \mid \mu \longrightarrow \mathtt{t}'_1 \mid \mu'}{!\mathtt{t}_1 \mid \mu \longrightarrow !\mathtt{t}'_1 \mid \mu'}$ (E-DEREF) $l:=v_2 \mid \mu \longrightarrow unit \mid [l \mapsto v_2]\mu$ (E-ASSIGN) $\frac{\mathsf{t}_1 \mid \boldsymbol{\mu} \longrightarrow \mathsf{t}'_1 \mid \boldsymbol{\mu}'}{\mathsf{t}_1 := \mathsf{t}_2 \mid \boldsymbol{\mu} \longrightarrow \mathsf{t}'_1 := \mathsf{t}_2 \mid \boldsymbol{\mu}'}$ (E-ASSIGN1) $\frac{t_2 \mid \mu \longrightarrow t'_2 \mid \mu'}{v_1 := t_2 \mid \mu \longrightarrow v_1 := t'_2 \mid \mu'}$ (E-Assign2) if true then t_2 else $t_3 \mid \mu \longrightarrow t_2 \mid \mu$ (E-IFTRUE) if false then t_2 else $t_3 \mid \mu \longrightarrow t_3 \mid \mu$ (E-IFFALSE) $\frac{ t_1 \mid \mu \longrightarrow t_1' \mid \mu'}{ \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \mid \mu \longrightarrow \text{if } t_1' \text{ then } t_2 \text{ else } t_3 \mid \mu'}$ (E-IF) $\frac{\mathsf{t}_1 \mid \boldsymbol{\mu} \longrightarrow \mathsf{t}_1' \mid \boldsymbol{\mu}'}{\operatorname{succ} \mathsf{t}_1 \mid \boldsymbol{\mu} \longrightarrow \operatorname{succ} \mathsf{t}_1' \mid \boldsymbol{\mu}'}$ (E-SUCC) pred $0 \mid \mu \longrightarrow 0 \mid \mu$ (E-PREDZERO) pred (succ nv_1) | $\mu \longrightarrow nv_1$ | μ (E-PREDSUCC)

 $\frac{ \mathsf{t}_1 \mid \boldsymbol{\mu} \longrightarrow \mathsf{t}_1' \mid \boldsymbol{\mu}' }{ \texttt{pred}\, \mathsf{t}_1 \mid \boldsymbol{\mu} \longrightarrow \texttt{pred}\, \mathsf{t}_1' \mid \boldsymbol{\mu} } \tag{E-PRED}$

iszero 0 $\mid \mu \longrightarrow$ true $\mid \mu$	(E-IszeroZero)
iszero (succ nv_1) $\mid \mu \longrightarrow \texttt{false} \mid \mu$	(E-IszeroSucc)
$\frac{\texttt{t}_1 \mid \mu \longrightarrow \texttt{t}_1' \mid \mu'}{\texttt{iszero} \texttt{t}_1 \mid \mu \longrightarrow \texttt{iszero} \texttt{t}_1' \mid \mu'}$	(E-IsZero)
	$\Gamma \mid \Sigma \vdash t$: T
$\Gamma \mid \Sigma \vdash$ unit : Unit	(T-UNIT)
$\frac{\mathbf{x}: \mathtt{T} \in \Gamma}{\Gamma \mid \mathtt{\Sigma} \vdash \mathbf{x} : \mathtt{T}}$	(T-VAR)
$\frac{\Gamma, \mathbf{x} : \mathtt{T}_1 \mid \Sigma \vdash \mathtt{t}_2 : \mathtt{T}_2}{\Gamma \mid \Sigma \vdash \lambda \mathtt{x} : \mathtt{T}_1 . \mathtt{t}_2 : \mathtt{T}_1 \rightarrow \mathtt{T}_2}$	(T-Abs)
$\frac{\Gamma \mid \Sigma \vdash t_1 : \mathtt{T}_{11} \rightarrow \mathtt{T}_{12} \qquad \Gamma \mid \Sigma \vdash t_2 : \mathtt{T}_{11}}{\Gamma \mid \Sigma \vdash t_1 t_2 : \mathtt{T}_{12}}$	(T-App)
$\frac{\Sigma(l) = \mathtt{T}_1}{\Gamma \mid \Sigma \vdash l : \mathtt{Ref } \mathtt{T}_1}$	(T-Loc)
$\frac{\Gamma \mid \Sigma \vdash t_1 : T_1}{\Gamma \mid \Sigma \vdash ref t_1 : Ref T_1}$	(T-Ref)
$\frac{\Gamma \mid \Sigma \vdash t_1 : \text{Ref } T_{11}}{\Gamma \mid \Sigma \vdash !t_1 : T_{11}}$	(T-Deref)
$\frac{\Gamma \mid \Sigma \vdash t_1 : \text{Ref } T_{11} \qquad \Gamma \mid \Sigma \vdash t_2 : T_{11}}{\Gamma \mid \Sigma \vdash t_1 := t_2 : \text{Unit}}$	(T-Assign)
Γ⊢true∶Bool	(T-True)
Γ⊢false∶Bool	(T-False)
$\frac{\Gamma \vdash t_1 : \text{Bool} \Gamma \vdash t_2 : T \Gamma \vdash t_3 : T}{\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T}$	(T-IF)
$\Gamma \vdash 0$: Nat	(T-Zero)
$\frac{\Gamma \vdash t_1 : \text{Nat}}{\Gamma \vdash \text{succ} t_1 : \text{Nat}}$	(T-Succ)
$\frac{\Gamma \vdash t_1 : \text{Nat}}{\Gamma \vdash \text{pred} t_1 : \text{Nat}}$	(T-Pred)
$\frac{\Gamma \vdash t_1 : Nat}{\Gamma \vdash iszerot_1 : Bool}$	(T-IsZero)
$\frac{\Gamma \vdash t_1 : T_1 \qquad \Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : T_2}$	(T-Let)

Typing