CIS 500 — Software Foundations

Final Exam

Answer key
December 14, 2005

True/False questions

For each of the following statements, circle T if the sentence is true or F otherwise.

1. (9 points)

(a)

(b)

(©

(d)

(e)

(h)

(i)

T

T

F

T

T

The small-step evaluation relation of a language must be deterministic (i.e. for any
term there should be only way for it to take a step) for the preservation theorem to
hold.

The uniqueness of types property (i.e., in a given context I', a term t has at most one
type T. Furthermore, there is exactly one derivation of I' - t : T.) must be true about
a language to prove the preservation theorem.

If the preservation theorem is true for a language, removing a typing rule may cause
it to become untrue.

If the progress theorem is true for a language, removing a typing rule may cause it to
become untrue.

In the pure untyped lambda calculus (without booleans, natural numbers, or any-
thing other than functions) all closed terms will either diverge or evaluate to a value.
(For reference, this language is shown on page 1 of the companion handout.)

The algorithmic rules for the lambda calculus with subtyping has the uniqueness of
types property. (For reference, this language is shown on page 4 of the companion
handout.)

The declarative rules for the lambda calculus with subtyping has the uniqueness of
types property. (For reference, this language is shown on page 5 of the companion
handout.)

In Featherweight Java (FJ), all programs will either diverge or evaluate to a value.
(For reference, this language is shown on page 9 of the companion handout.)

FJ is specified with a large-step operational semantics.

Grading scheme: Binary. 1 pt each.

Inductive definitions

2. (14 points) We can define a simple term language as follows:

Now consider the following binary relation between these terms, specified by the following inference
rules:

AX1 AX2
*x ~ 0O O~ %
t;~t tr~t toAt7)~(ts At
1~ty 2t el (taAtg)~(ty S)AMPZ
(t1 At2)~(t3Aty) (t1At2)~(t3Aty)

(a) Draw a derivation for (x A O) ~ (x A O)

AX1
* ~ 0O O~ %

(*AO)~(xADO)

AX2
AMP1

Answer:

Grading scheme: 2 points. -1 for “minor” errors.

(b) As you may have noticed, this set of rules is not-syntax directed. Give a different derivation for
(xADO) ~(xADO).

AX2 Ax1
O~ % * ~ [A 1
. MP
Answer: (OA*) ~ (OA%)
AMP2

(*AO)~(xADO)

Grading scheme: 2 points. -1 for “minor” errors.

2

(©)

(d)

Fortunately, we can remove exactly one rule and produce a relation that (a) is syntax-directed
and (b) equivalent to the previous relation. Which rule should we eliminate?

Answer: AMP2
Grading scheme: 1 point.
For any x does there exist at least one y such that x ~ y? If yes, prove it. If no, show a counterex-

ample. Be explicit in your answer, but to the point. Points may be deducted for any extraneous
information (true or false).

Answer: YES. Proof by induction on the structure of x.

e Case x = x: Choose y = O, and derive x ~y by AX1.

o Case x = O: Choose y = *, and derive x ~y by AX2.

o Case x = x1 /\ x, for some x1 and x,: By the induction hypothesis, there exists y1 and y, such that
x1 ~ Yz and x2 ~y1. Choose y = y1 Ny, and derive x ~y (from x1 ~yp and x, ~ y1) by AMP1.

Grading scheme: 9 points total for this problem.

o 1 point for saying YES.

o -1 for misc. confusions in a basically correct proof. (forgetting “choosey =...”, or for renaming x to
t without saying so, etc.)

o -3 for missing “there exists yy and y,...”

o -4 for induction on the wrong things

e -5 for no induction

o -2 for missing IH

o -2 for mangling the /\ case

Untyped lambda-calculus

The following questions refer to the untyped lambda-calculus. The syntax and evaluation rules for this system
are given on page 1 of the companion handout.

. (12 points) Circle the normal forms of the following lambda calculus terms, if one exists. If there is
no normal form, circle NONE. (Recall that the normal form of t is a term u such thatt —" u and

u-/—.)

(@) (Ay. (Az. xy)) (Ax. 2)
i (Ay. (Az. xy)) (AX. 2)
ii. (Az. X (AX. z))
iii. (Aw. (Ax.z) (Ax.2))
iv. (Aw. X (AX. z))
v. NONE

Answer: (iv)

(b) (AY. (Az. zz) y) (M. X)
i (AY. (Az. zz) y) (M. X)
ii. (Az. z2z)(AX.X)
iii. (AX. X)
iv. (AY. yy)(Az.2z)
v. NONE
Answer: iii
() (AXx. xxX) (AX. XX X)
i (AX. XX X) (AX. X X X)
ii. (AX. X X X)
i, (AX. X X X) (AX. X X X) (AX. X X X)

iv. X X X
v. NONE

Answer: v
(d) (Ax. (Ay. yy)(Az. z2))
i (AX. (AY. YY) (Az. 22))

ii. (AX. (AY. yVY))
iii. (Ay. (Az. z2))

iv. (AY. yy)(Az. z2)
v. NONE

Answer: i

Grading scheme: Binary. 3 points per part.

Recall the encoding of booleans and numbers in the untyped lambda calculus from Chapter 5 of
TAPL. The next two questions concern that encoding.

tru=At. Af. t
fls=At. Af. f
Co=AS.Az.Z

ScC=An. As. Az. s(nsz)

. (3 points) Which of these lambda calculus terms implements xor (the exclusive or function, which
returns t r u when exactly one of its argumentsis t r u.)

(@) Ax. Ay. x(yflstru) (ytrufls)

(b) AX. AY. XYy

(c) AX. Ay. truxy

(d) Ax. Ay. xyfls

Answer: (A)

Grading scheme: Binary.

. (3 points) Which of these lambda calculus terms implements odd, a function that returns t r u if its
argument (the encoding of a natural number) is odd and f | s otherwise.

(@ Am m(An. nflstru) fls

(b) Am mfls (An. trufls)

(c) Am fls(An. nmtru)

(d) Am m(An. tru) fls

Answer: (A)

Grading scheme: Binary.

Implementing simple type systems

The following questions refer to the Arith language, a typed calculus with booleans and natural numbers. The
syntax, typing, and evaluation rules for this system are given on page 2 of the companion handout.

. (12 points) The eval 1 function below implements the small-step evaluation relation almost correctly,
but there are mistakes in the T f, TnSucc, TnPr ed and Tnl sZer o cases of the outer match. Show
how to change the code to repair at least one mistake in each branch. (For simplicity, file information
has been omitted from the datatype.)
type exp =
TnZero | TnSucc of exp | TnPred of exp
| Tm sZero of exp| Tnilrue | TnFalse | Tmf of exp * exp * exp

let rec isnunericval t = ... (* returns true whent is a nuneric value *)
let rec isval t = ... (* returns true whent is a value. x)

exception NoRul eApplies

let rec evall t = match t with
v when isval v — raise NoRul eApplies
| TmMf(t1,t2,t3) —
(match t1 with
Tmlrue — t2
| TnfFalse — t3
| _ — raise NoRul eAppli es)
| TnBucc(tl) — TnSucc(tl)
| TnPred(tl) —
(match t1 with
TnZero — Tn¥ero
| TnBucc(nvl) — nvl
| _ — TnPred(evall tl))
| Tm sZero(tl) —
(match t1 with
TnZero — Tnfal se
| TnBSucc(nvl) when isnunericval nvl — TnFal se

| _ — TmsZero(evall tl))

Answer:

o Tmlf — last branch should be Tm f (eval 1 t1, t2, t3)

e TmSucc — t1 should be eval 1 t 1.

o TmPred — TrSucc should check to see if nv1 is a numeric val (when i snumeri cval nv1 guard...)
o TmlsZero — TrFal se should be TMIT ue in the Tner o case.

Grading scheme: 3 points per branch.

o -1 per incorrect line, if the correction was made (i.e., you also turned a correct line into an incorrect one)
o -3 if you missed the fix for a branch entirely

o -1 for trivial errors

Simply typed lambda-calculus with subtyping, records, and references

The following questions refer to the simply typed lambda-calculus with subtyping, records, and references. The
syntax, typing, and evaluation rules for this system are given on page 5 of the companion handout.

7. (12 points)

What is the minimal (or principal) type of the following expressions in the simply-typed lambda-
calculus with subtyping, records and references? If a term does not type check, write NONE.

(a) (Ax: Top. x) {a=2, b=3}
Answer: Top

(b) Ay: {} —»Ref Top. Ax: Top. y X
Answer: NONE

(c) if true then Ax:Ref Nat. { y={b=!x}, d=!x }
el se Ax: Ref Nat. { y={a=2, b=3} }

Answer: (Ref Nat) — {y:{b: Nat}}

(d) if true then Ax:Ref Top. !x
el se Ax: Ref Nat. !x

Answer: Top

Grading scheme: Binary. 3 points per part.

8. (6 points) Suppose we add a new axiom

Top — Top <: {}

to the rules defining the subtype relation. Does the progress theorem remain true in the new system?
Briefly explain why or why not.

Answer: Progress remains true: there is no way to do anything with a value of type { } , hence no way to test
whether it is really a record (and get stuck if otherwise).

9. (6 points) Suppose, instead, that we add the subtyping axiom

Top <: Top — Top

to the original system. Does the progress theorem remain true? Briefly explain why or why not.

Answer: Progress fails. For example, the term {} {} is well typed, but stuck.

Grading scheme:

o 2 points for “true” or “false”
o -1 for substantially correct, but difficult to follow.
o -2 for confused but mentioning a correct keyword or two

o -3 for better than nothing.

10. (5 points) Subtyping references is quite harsh: the rule S-REF requires both covariance and contravari-
ance for the type parameter. But we can do better.

Suppose we replace the type Ref T with the type Ref T U. The first parameter T is used when the
reference is read, the second U is when the reference is written. When a reference is created, both of
these parameters are the same.

We make this change by modifying the following typing rules for references:

Nt :Ref ST
_ (T-DEREF)
r=1t:s
N-t: Ref ST THuU:T
- (T-ASSIGN)
FEt:=u:Unit
Mt T
(T-REF)

Fcreft :Ref TT
For example, suppose we have the following type abbreviations:

T = {a: Bool }
U = {a: Bool, b: Nat}

With these rules, the following function f, should type check. If the argument z has type Ref T U,
then the dereference (! z) has type T={ a: Bool } so we are allowed to access the a component of the
record. When we assign to z, we use the type Uwhich matches the type of the two records.

f =Az:Ref TU — Unit.
if ('z).a then
z :={a = false, b=1}
el se
z :={a =true, b=3}

We should be able to apply the function f to, for example, an argument of type Ref T T or of type
Ref UU. However, we cannot do that unless we have a way of showing that Ref TT <: Ref T Uand
that Ref UU<: Ref T U. (Note that, in the original system, there is no common supertype of the types
Ref Tand Ref U.)

Therefore, we need to be careful when designing the rule for subtyping reference types. What should
the preconditions of this rule be?

S-REF

Ref S] T] <: Ref Sz Tz

Answer: S1 <. S Ty <: T
Grading scheme:
o -2 for including an extra premise (that was at least well-formed)

o -3 for getting one of the premises backwards.
o No credit for getting both premises backwards, or for premises that were ill-formed.

10

11.

Featherweight Java

The following questions refer to the Featherweight Java language. The syntax, typing, and evaluation rules for
this system are given on page 9 of the companion handout.

(5 points) The Preservation lemma for Featherweight Java is not stated as:

IfrFt :Candt —t/thenTHt’:C

Why not? Justify your answer.

Answer: It's not true because of the algorithmic subtyping in FJ.

For example, - (Obj ect) newC() : Obj ect and (Obj ect) newC() — newC() but

FnewC() : Object.

Grading scheme: We were looking for answers that explain that algorithmic subtyping is to blame, or provide a
counterexample.

Incorrect answers included just stating the right preservation lemma (that doesn’t give an explanation why this
one was false!), blaming casting (although this counterexample uses casting, there are many that do not), or
giving a counterexample in the wrong language.

11

12. (15 points) The method overriding rule is rather restrictive in FJ. Any overridden method must have
exactly the same type as it appears in the super class.

We could relax this rule as follows:
mtype(m D) = D—Dy implies D<: Cand Cy <: Dy
override(m D, C—Cp)

For an example of a program that uses this rule, see the next problem.

Now, given the following lemma:

Override Lemma: If nt ype(m Dy) = D—DthenforallCGy <: Dy, mype(m G) =C—C
where C<: Dand D<: C.

Show part of the proof for the substitution lemma for FJ:

Substitution Lemma: If I', X: B-t | Dand '+ 5. Awhere A<: BthenT I [X — S]t . Cfor some
C<: D

This lemma is proved by induction on the typing derivation I', X: Bt . D. You need only show the
case when T-INVK is the last rule of that derivation. Furthermore, you may make use of the Override
Lemma without proving it. Be explicit in your answer, but to the point. Points may be deducted for
any extraneous information (true or false).

Answer: In this case, we know that:

t=to.m7t)

IX:Bkty:Dy

Nx:BFHT:D

mype(m Dy) =E— D,

D<: E

By induction, we know that ' [X +— St o : Co where Cy <: Dy and T+ [X +— S]T : Cwhere C<: D.
By Override Lemma, mt ype(m C) =F — Cwhere C<: Dand E<: F.

By transitivity (twice times!), C<: F

By T-INVK T+ X — S](to. m(T)): Cand C<: D

Grading scheme: Strict. 3 points per proof step (2 uses of induction, using the override lemma correctly, using
transitivity correctly, and using T-Invk correctly). Merely stating true facts (like the premises of T-Invk or
the override lemma without doing these steps received no credit. Little to no credit for doing these proof steps
incorrectly.

12

Object encodings

13. (12 points) Consider the following Java class definitions (with the relaxed rule for method overriding
as discussed in the previous question):

class A extends nbject {
bj ect f1;
A(Object f1) { super(); this.f1 =1"f1; }
bject n(Object x) { return this.n(); }
bject n() { return this.mthis.f1); }
}
class B extends A {
A f2;
B(Object f1, Af2) { super(fl); this.f2 =1f2; }
A mObject x) { return this.f2; }
bject n() { return super.n(); }

}

Complete the encoding of the classes A and B into the simply-typed lambda-calculus with subtyping
(as shown on page 5 of the companion handout), in the style of Section 18.11 of TAPL.

RepA = { f1 : Ref bject }
RepB = { f1 : Ref hject, f2 : Ref A}
A ={ m : Cbject —» Object, n: Unit — Object}
B = | {m: Oject - A n Unit — Object} |
aC ass = Ar:RepA. Athis:Unit — A A _:Unit.

{ m= Ax:Object. [(this unit).n unit],

n=A:Unit. [(this unit).m(I(r.f1))] }

bd ass = Ar:RepB. Athis:Unit — B. A_:Unit.

l et super = aCass r this unit in
{ m= M A I (r.f2),
n=A_:Uiit. [super.n unit]| }
newA = Af lval : Obj ect.
let r = { f1 =ref flval } in
[fix (aClass r) unit|
newB = Af lval : Obj ect. Af2val: A
let r = { f1 =ref flval, f2 = ref f2val } in
[fix (bClass r) unit|

Grading scheme: 2 points per blank. 1 point for “minor” errors.

14. (6 points)
Suppose that v and w are values of type A. Write down the final results of evaluating the following
terms, using the encoding from the previous problem. If there is no final result, write diverges.

(a) (newAv).nunit
Answer: diverges

(b) (newBv w). mw
Answer: w

13

(¢c) (newBvw.nunit
Answer: w

Grading scheme: Binary. 2 points per part.

14

Companion handout

Full definitions of the systems
used in the exam

Syntax

AX. t
tt

AX. t

Evaluation

(Ax

Untyped lambda-calculus

t]—)t{
t1t2—)t{t2
tz—)té
V1t2—>V]té

Cti2) Vo — X Vot

terms
variable
abstraction
application

values
abstraction value

t —t’

(E-APP1)

(E-APP2)

(E-APPABS)

For reference: Boolean and arithmetic expressions

Syntax
t == terms
true constant true
fal se constant false
iftthent elset conditional
0 constant zero
succt successor
predt predecessor
iszerot zero test
VA values
true true value
fal se false value
nv numeric value
nv = numeric values
0 zero value
succ nv successor value
T o= types
Bool type of booleans
Nat type of numbers
Evaluation
iftruethent,elset; —t> (E-TFTRUE)
iffalsethent,elsets —t3 (E-IFFALSE)
t, —t {
- y (E-TF)
iftithent,elsets —iftithent,elsets
t; —t {
(E-Succq)
succty; — succt
pred0 — 0 (E-PREDZERO)
pred (succnvy) — nv; (E-PREDSUCC)
t;, —t {
(E-PRED)
predt; — predtq
iszero0 — true (E-ISZEROZERO)
i szero(succnvy;) — fal se (E-IszEROSUCC)
t; —t {
(E-ISZERO)

iszerot; —iszerot}

continued on next page...

Typing
true . Bool

fal se . Bool

t, . Bool to. T

iftythentelset3z: T

0. Nat
t7 . Nat
succt . Nat
t1 . Nat
predt;: Nat
t1 . Nat

iszerot . Bool

(T-TRUE)
(T-FALSE)

(T-IF)
(T-ZERO)

(T-Succ)

(T-PRED)

(T-ISZERO)

Pure simply typed lambda calculus with subtyping (no records) — algorithmic rules

Syntax
t u=

AX:T. t
tt

AX:T. t

Top
T—-T

Mx: T

Evaluation

Algorithmic subtyping

Algorithmic typing

t]—>t{
t1t2—>t{t2

tz—)té
V]'[z—)V]té

(AX: Ti71.t12) Vo — X > Vo]t 12

bS< Top

bTi < $ S < T,
|‘>S1—>Sz<. T]—>T2

x:Terl
Fex. T
IXx:Tibty: Ty
T AX:Ti.t2: T1—=T2

't Ty T =T11—T12
Fty: Ty T < Ty

etity: To2

terms
variable
abstraction
application

values
abstraction value

types
maximum type
type of functions
contexts

empty context
term variable binding

t —t’

(E-APP1)

(E-APP2)

(E-APPABS)

(SA-TOP)
(SA-ARROW)

't . T

(TA-VAR)

(TA-ABS)

(TA-APP)

Simply typed lambda calculus with subtyping

(and records, references, recursion, booleans, numbers)

AX: Tt

tt

{| =t iez..n}
t. |

unit

ref t

It

true

fal se
iftthent elset
0

succt

predt

iszerot

let x=tint
fixt

AX: Tt
{| i=Vi ‘161..“}
uni t
1
true
fal se
nv

{l l Ti. iel..n}
Top
T-—T
Uni t
Ref T
Bool

terms

variable
abstraction
application
record
projection
constant uni t
reference creation
dereference
assignment
store location
constant true
constant false
conditional
constant zero
successor
predecessor
zero test
let binding
fixed point of t

values

abstraction value
record value
constant uni t
store location
true value
false value
numeric value

types

type of records
maximum type
type of functions
unit type
type of reference cells
type of booleans
type of natural numbers

contexts

empty context
term variable binding

stores

empty store

wl=v
Y ou=
0
LT
nv :=
0
succ nv
Evaluation

tylp—tqlp

titolp—tytofy

talp—tslp

Vitalp— vyt
(AX:Tiq.t12) Vol — X = valt 12| 1
{| i=Vi iE1""}. | j‘ H—>Vj| i

tilp—tilu

t. llp—tf. 1
tilp — iy
{1 i=vy e i=t 5, | =ty ¥}

{1 i=v; €] 5=t j/' | =ty k)| w

L & dom(p)
ref vilu—1](u,l—vy)

tilp—t |y

refty|p—ref tg|p

w(l) =v
Mip—v|p

tilp—typ

Pty lp—tty
L=vy|pu—unit|[l—vyu

tilp—tg|y

t1Z=t2‘p—>t1Z=t2|u/

tolpu—t)|y

Viistylp—vyi=th |y
iftruethentselsetzlu—typ
if falsethentelsetslu—tslu

tilp—tilu

iftithent,elsetszlp—iftjthent,elsets|py’

6

location binding

store typings
empty store typing
location typing

numeric values
zero value
successor value

\tlu—ﬂ’lu’

(E-APP1)

(E-APP2)

(E-APPABS)
(E-PROJRCD)

(E-PROY)

(E-RcD)

(E-REFV)

(E-REF)

(E-DEREFLOC)

(E-DEREF)
(E-ASSIGN)

(E-ASSIGN1)

(E-ASSIGN2)

(E-IFTRUE)
(E-IFFALSE)

(E-IF)

tilp—tilu

succtqlp— succtqlp
predOjpu— 0| u
pred (succnvy)|p—nvylp

tilp—tilpu

predt{|p—predtqlp
iszeroOlu—truelu
i szero(succnvy)|p—falseln

tilp—tlp

iszerot |p—iszerot{|u’
let x=vyjintylu— [X—=viltalpn

tilp—tly

let x=tyintylu—let x=tjint, p

fix(Ax:Ti.t2) |
— X (Fix (A T t2))]t2lp

tylp—tqlp

fixtilp—fixtylp
Subtyping
S< S

s< Uu u< T
S< T

S< Top

W< & SS< T,
S]—>Sz < T1—>T2

{l ‘L T‘L i€1..n+k} < {I 1 T‘L iEI..n}

foreachi S;< T;
{l 1 S‘L iEl..n} < {l 1 T‘L iEl..n}

{kj: S; '€} is a permutation of { | ;: T; *<' "}

{k]' S) 161..11} < {l ‘L' T'L iEl..n}

S] < T] T] < S]
Ref S < Ref T

(E-Succq)

(E-PREDZERO)
(E-PREDSUCC)

(E-PRED)

(E-ISZEROZERO)
(E-IsZEROSUCC)

(E-ISZERO)
(E-LETV)

(E-LET)
(E-FIXBETA)

(E-FI1x)

(S-REFL)
(S-TRANS)
(S-Topr)
(S-ARROW)
(S-RCDWIDTH)

(S-RCDDEPTH)
(S-RCDPERM)

(S-REF)

Typing M-t T

foreachi T|ZFt;: Ty

T-RcD
r|z’_{|i=tii€1..n} . {li:Tiiel..n} ()
MIEtq: {lgTyetm
| 1 {1 i } (T—PRO])
MEIFEtq. 150 T
xX:Terl
- (T-VAR)
MNIkEx: T
Mx:T| 2kt T
1] 20 T2 (T-Abs)
MNIEAX:Ti.t2: T1—=Ts
NMNIkty: T1—=T NIkt T
\ 1 11—Ti2 \ 2 11 (T-APP)
MNXktqty: Tyz
Nkt : S S< T
: (T-Sus)
NIkt . T
MXFunit: Unit (T-UNIT)
(=T
(T-LoC)
Nk1:. Ref T
MNkt;: T,
(T-REF)
Nxkrreft ;. Ref Ty
FlZFhZ Rean
(T-DEREF)
MkElt;: Ty
Nxkt;: Ref Ty MNxXkt,y: Tig
- (T-ASSIGN)
MNXktq:=t,: Unit
I'Z+true: Bool (T-TRUE)
N xtfalse: Bool (T-FALSE)
'kt : Bool MXkEt,: T Mktsz: T
i (T-IF)
rNxk-iftythent,elset;: T
M Z+HO0: Nat (T-ZERO)
' Zktq: Nat
(T-Succ)
' ZtFsucctq: Nat
IM'XZkt;: Nat
(T-PRED)
N Xkpredt;: Nat
IM'Zkt;: Nat
- (T-ISZERO)
I''X+iszerot; . Bool
MNkHt,: T Ix:Ti Xkt T
| 1 1 . 1l 2. T (T-LET)
MNk-let x=t7inty: T,
FlZFh: T]HT]
(T-F1x)

MN-fixt;: T,

Featherweight Java

Syntax

Q

class declarations
cl ass Cextends C{Cf; KM

K := constructor declarations

C(CT) {super(f); this.T=f;}

M = method declarations
Cm(CX) {returnt;}

t = terms
X variable

t.f
t. mT)

field access

method invocation
newC(t) object creation
(Ot cast
vV o= values
new C(V) object creation
Subtyping C<:D
c< C
C< D D< E
C< E
CT(C) =cl ass Cextends D{. ..}
C< D
Field lookup fields(C) =CFf
fields(Cbj ect) =
CT(C) =cl ass Cextends D{Cf; KM
fields(D) =Dg
fields(C) =Dg, Cf
Method type lookup mtype(m C) = C—C
CT(C) =cl ass Cext ends D{Cf; KM
Bm(BX) {returnt;} eM
mtype(m C) = B—B
CT(C) =cl ass Cext ends D{Cf; KM
mis not defined in M
mtype(m C) = mtype(m D)
Method body lookup mbody(m C) = (X,t)

CT(C) =cl ass Cextends D{Cf; KM
Bm(BX) {returnt;} eM
mbody(m C) = (X,t)

CT(C) =cl ass Cext ends D{Cf; KM
mis not defined in M
mbody(m C) = mbody(m D)

Valid method overriding ‘ override(m D, C—GCy) ‘

mtype(m D) = D—Dy implies C=Dand Cy = Dy
override(m D, C—Cy)

Evaluation t —t’

fields(C) =Cf
(newC(Vv)).f{ — vy

(E-PROJNEW)

mbody(m C) = (X,t o)
(newC(Vv)). mu) — X—Tu,this—newC(V)lt,

(E-INVKNEW)

C< D
(D) (newC(V)) — new(C(V)

(E-CASTNEW)

to—1]
0o (E-FIELD)
to.f —>t6f
to—1]
" (,) — (E-INVK-RECV)
to.mMT) —t§. mT)
| Hti’

E-INVK-ARG
Vo. MV, ty, T) ()
— Vo.MV, t/, T)

i1

ti —st!
i E-NEW-ARG
newC(v, ty, T) ()
— newC(v, t/, T)
t t
0o—1lg (E-CAsT)
(Oto—(Oty
Term typing =
x:CeTl
xLel (T-VAR)
N-x:cC
Mhto: G fields(Co) =TT (T-FIELD)
Nto. fi: G
FHto: Go
r-t:cC C<: D (T-INVK)

TFto.mT): C

10

Method typing

Class typing

fields(C) =Df
r-t: ¢ ©<C< D
'-newC(t) : C

Fto: D D<: C
FF(Oto: C

'-to: D C<t:D C#D
r-(Qto: C
N-to: D C«L< D D% C
stupid warning
r-(Qto: C

Xx:Cthis:Ckty: Ep Eo<: G
CT(C) =cl ass Cextends D{...}
override(m D, C—Cy)

Com(CX) {returnty;} KinC

K= C(Dg, Cf) {super(g); this. T =F;}
fields(D) =Dg MOKinC

cl ass Cextends D{Cf; KM K

11

(T-NEW)

(T-UCASsT)

(T-DCAST)

(T-SCAST)

MCKinC

