
CIS 500 — Software Foundations

Midterm I

Answer key
October 12, 2005

Name:

Student ID:

Email

Status registered for the course

not registered: trying to improve a previous grade

not registered: just taking the exam for practice

Program undergrad

undergrad (MSE submatriculant)

CIS MSE

CIS MCIT

CIS PhD

other



Instructions

• This is a closed-book exam: you may not make use of any books or notes.

• You have 80 minutes to answer all of the questions. The entire exam is worth 80 points.

• Questions vary significantly in difficulty, and the point value of a given question is not always exactly
proportional to its difficulty. Do not spend too much time on any one question.

• Partial credit will be given. All correct answers are short. The back side of each page may be used as
a scratch pad.

• Good luck!

1



Operational semantics

The first four questions concern the following simple programming language:

t ::= terms
true constant true
false constant false
if t then t else t conditional
pair t t pairing
fst t first component
snd t second component

v ::= values
true true value
false false value
pair v v pair value

and its large-step operational semantics.

true ⇓ true (B-True)

false ⇓ false (B-False)

t1 ⇓ true t2 ⇓ v

if t1 then t2 else t3 ⇓ v
(B-IfTrue)

t1 ⇓ false t3 ⇓ v

if t1 then t2 else t3 ⇓ v
(B-IfFalse)

t1 ⇓ v1 t2 ⇓ v2

pair t1 t2 ⇓ pair v1 v2

(B-Pair)

t ⇓ pair v1 v2

fst t ⇓ v1

(B-Fst)

t ⇓ pair v1 v2

snd t ⇓ v2

(B-Snd)

2



1. (5 points) Show the derivation of the large-step evaluation of the following term.

fst (if true then pair true false else pair false true)

Answer:
B-True

true ⇓ true

B-True
true ⇓ true

B-False
false ⇓ false

B-Pair
pair true false ⇓ pair true false

B-IfTrue
if true then pair true false else pair false true ⇓ pair true false

B-Fst
fst (if true then pair true false else pair false true) ⇓ true

3



2. (10 points) We might also want to define a small-step semantics for this language, such that

t ⇓ v if and only if t −→
∗

v

Recall that a small-step semantics is composed of both computation and congruence rules. The con-
gruence rules for this language are as follows:

t1 −→ t′
1

if t1 then t2 else t3 −→ if t′
1
then t2 else t3

(E-If)

t1 −→ t′
1

pair t1 t2 −→ pair t′
1
t2

(E-Pair1)

t2 −→ t′
2

pair v t2 −→ pair v t′
2

(E-Pair2)

t1 −→ t′
1

fst t1 −→ fst t′
1

(E-Fst)

t1 −→ t′
1

snd t1 −→ snd t′
1

(E-Snd)

Some of the computation rules are:

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

However, this list is not complete. What are the remaining computation rules for the small-step
semantics?

Answer:

fst (pair v1 v2) −→ v1 (E-Fst1)

snd (pair v1 v2) −→ v2 (E-Snd1)

4



3. (5 points) With a small step semantics, there is always the possibility that a term could fail to produce
a value. Are there any “stuck” terms in this language? If so, give an example. If not, explain why not.

Answer: Yes, there are stuck terms, such as fst true.

5



Functional programming

The following questions are about the untyped lambda calculus. For reference, the semantics of this
language appears at the end of the exam.

Recall the Church encoding of lists and booleans in the untyped lambda calculus.

tru = λx. λy.x

fls = λx. λy.y

not = λb. b fls tru

and = λb1. λb2. b1 b2 fls

or = λb1. λb2. b1 tru b2

nil = λc. λn. n

cons = λh. λt. λc. λn. c h (t c n)

head = λl. l (λh.λt. h) fls

tail = λl.

fst (l (λx. λp. pair (snd p) (cons x (snd p)))

(pair nil nil))

isnil = λl. l (λh.λt. fls) tru

4. (5 points) Which of the following terms defines the function all that takes a list of boolean terms
and determines of all of the terms are true? For example,

all (cons tru (cons fls nil)) should be equivalent to fls

and

all nil should be equivalent to tru. Circle the correct answer.

(a) all = λl. l and tru

(b) all = λl. all (hd l) (tail l)

(c) all = λl. l (λa.λb. a tru b) fls

(d) all = λl. (λa. λb. a and b) l fls

Answer: a

5. (5 points) Which of the following terms defines the function map that take a term l, representing a list,
and a function f, applies f to each element of l, and yields a list of the results (just like the List.map

function in OCaml). For example:

map not (cons tru (cons fls nil))

should be equivalent to

(cons fls (cons tru nil)). Circle the correct answer.

(a) map = λf. λl. l (f cons) nil

(b) map = λf. λl. l (λh. λt. cons t (f h)) nil

(c) map = λf. λl. λc. λn. l (λh. λt. c (f h) t) n

Answer: c

6



6. (5 points) Which of the following OCaml terms implements the map function, using recursion? Circle
the correct answer.

(a) let rec map f l = match l with [] → f [] | (hd :: tl) → f hd :: map f tl

(b) let rec map f l = match l with [] → [] | (hd :: tl) → f hd :: map f tl

(c) let rec map f l = match l with [] → f [] | (hd :: tl) → hd :: map f tl

(d) let rec map f l = match l with [] → [] | (hd :: tl) → hd :: map f tl

(e) let rec map f l = match l with [] → f [] | (hd :: tl) → f hd :: f tl

(f) None of the above

Answer: b

7



Proofs by induction

7. (4 points) What is the structural induction principle for the untyped lambda calculus?

Answer: For all t, P (t) if and only if

• P (x)

• P (t) implies P (λx.t)

• P (t1) and P (t2) implies P (t1 t2).

8. (15 points) Complete the following proof of a property of the untyped lambda calculus, by induction
on the structure of lambda terms.

Theorem: If t is closed, and t −→ t′, then t′ is closed.

You may use, without proving, the following lemma about substitution.

Lemma: If λx.t1 is closed, and t2 is closed, then the substitution [x 7→ t2]t1 is also closed.

We prove the theorem by induction on the structure of the lambda term t.

• Suppose t is a variable x. This case is trivial because Answer: variables are not closed.

• Suppose t is a lambda term λx. t1. This case is also trivial because Answer: t 6−→.

• Suppose t is an application t1 t2. Consider the possible ways that t −→ t′.

– Suppose the last rule used was E-App1 where t1 −→ t′
1
. Answer: As t is closed, then t1

is also closed. So by induction t′
1

is also closed. Therefore, the term t′
1
t2 is closed.

– Suppose the last rule used was E-App2, where t1 is a value and t2 −→ t′
2
. Answer: As t

is closed, then t2 is also closed. So by induction, t′
2

is also closed. Therefore the term t1 t′
2

is closed.

– Suppose the last rule used was E-AppAbs, where t1 is a lambda term λx. t11, t2 is a value,
and t′ is [x 7→ t2]t11. Answer: As the application t1 t2 is closed, then the subterms λx.t11

and t2 are also closed. By the lemma, this substitution is closed.

8



Untyped lambda-calculus

9. (9 points) What do the following lambda calculus terms step to, using the single-step evaluation
relation t −→ t′. Write NONE if the term does not step. For reference, the semantics of the untyped
lambda calculus appears in the appendix of the exam.

(a) (λx.x)(λx. x x)(λx. x x)

Answer: (λx. x x) (λx. x x)

(b) (λx. (λx.x) (λx. x x))

Answer: NONE

(c) (λx. (λz. λx. x z) x) (λx. x x)

Answer: (λz. λx. x z)(λx. x x)

10. (9 points) Now consider the leftmost/outermost evaluation relation from homework 4.

t1 −→ t1
′

E-App1
t1 t2 −→ t1

′ t2

λx.t1 6−→
E-App2

(λx.t1) t2 −→ [x 7→ t2]t1

t2 −→ t2
′

E-App3
x t2 −→ x t2

′

(s t) 6−→ t2 −→ t2
′

E-App4
(s t) t2 −→ (s t) t2

′

t1 −→ t1
′

E-Abs
λx.t1 −→ λx.t′

1

Using this reduction relation, what do the following terms step to? Again, write NONE if the term
does not step.

(a) (λx.x)(λx. x x)(λx. x x)

Answer: (λx. x x)(λx. x x)

(b) (λx. (λx.x) (λx. x x))

Answer: (λx.(λx. x x))

(c) (λx. (λz. λx. x z) x) (λx. x x)

Answer: (λx. λy. y x)(λx. x x)

9



Nameless representation of terms

11. (4 points) Suppose we have defined the naming context Γ = a,b,c,d. Then the “nameless represen-
tation” of the term λx.d x (λy.x) is λ.1 0 (λ.1).

Write down the nameless representation for each of the following terms, in the given naming context.

(a) λx. λy. x c y

Answer: λ. λ. 1 3 0

(b) λx. b (λy. d x x) d

Answer: λ. 3 (λ. 2 1 1) 1

12. (4 points) Write down (in de Bruijn notation) the normal form of the following de Bruijn term:

(λ. λ. 1 (λ. 1)) (λ. 0)

Answer: λ. (λ.0) (λ. 1)

10



For reference: Untyped lambda calculus

Syntax

t ::= terms
x variable
λx.t abstraction
t t application

v ::= values
λx.t abstraction value

Evaluation

t1 −→ t′
1

t1 t2 −→ t′
1
t2

(E-App1)

t2 −→ t′
2

v1 t2 −→ v1 t′
2

(E-App2)

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

11


