
CIS 500 — Software Foundations

Midterm I

October 11, 2006

Name:

Student ID:

Email:

Status: registered for the course

not registered: sitting in to improve a previous grade

not registered: just taking the exam for practice

Section: 500-001 (Ph.D.)

500-002 (MSE / undergraduate)

Score

1

2

3

4

5

6

7

8

9

Total

Instructions

• This is a closed-book exam: you may not use any books or notes.

• You have 80 minutes to answer all of the questions. The entire exam is worth 80 points for students
in section 002 and 90 points for students in section 001 (there is one PhD-section-only problem).

• Questions vary significantly in difficulty, and the point value of a given question is not always exactly
proportional to its difficulty. Do not spend too much time on any one question.

• Partial credit will be given. All correct answers are short. The back side of each page may be used as
a scratch pad.

• Good luck!

1

OCaml

1. (5 points) The forall function takes a predicate p (a one-argument function returning a boolean)
and a list l; it returns true if p returns true on every element of l and false otherwise.

forall (fun x -> x >= 3) [2;11;4];;

- : bool = false

forall (fun x -> x >= 3) [3;4;5];;

- : bool = true

(a) What is the type of forall?

(b) Complete the following definition of forall as a recursive function:

let rec forall p l =

2. (5 points) Recall the function fold discussed in class:

let rec fold f l acc =

match l with

[] -> acc

| a::l -> f a (fold f l acc);;

val fold : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

Complete the following definition of forall by supplying appropriate arguments to fold:

let forall p l =

fold ___

2

Untyped lambda-calculus

The following questions are about the untyped lambda calculus. For reference, the definition of this
language appears on page 13 at the end of the exam.

Recall the definitions of the following lambda-terms from the book and/or lecture notes:

/* A dummy "unit value", for forcing thunks */

unit = λx. x;

/* Standard definition of booleans */

tru = λt. λf. t;

fls = λt. λf. f;

not = λb. b fls tru;

test = λb. λt. λf. b t f unit;

/* Standard definition of pairs */

fst = λp. p tru;

snd = λp. p fls;

pair = λx. λy. λsel. sel x y;

/* Standard call-by-value fixed point function. */

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

/* Standard definitions of church numerals and arithmetic operations */

c0 = λs. λz. z;

c1 = λs. λz. s z;

c2 = λs. λz. s (s z);

c3 = λs. λz. s (s (s z));

c4 = λs. λz. s (s (s (s z)));

c5 = λs. λz. s (s (s (s (s z))));

c6 = λs. λz. s (s (s (s (s (s z)))));

scc = λn. λs. λz. s (n s z);

iszro = λm. m (λdummy. fls) tru;

zz = pair c0 c0;

ss = λp. pair (snd p) (scc (snd p));

prd = λm. fst (m ss zz);

3

3. (6 points) Circle the term that each of the following lambda calculus terms steps to, using the single-
step evaluation relation t −→ t′. If the term is a normal form, circle DOESN’T STEP.

(a) (λx.x) (λx. x x) (λx. x x)

i. (λx. x) (λx. x x) (λx. x x)

ii. (λx. x x) (λx. x x)

iii. (λx′. (λx. x x)) (λx. x x)

iv. (λx. x) (λx. x x)

v. DOESN’T STEP

(b) (λx. (λx.x) (λx. x x))

i. (λx. (λx.x) (λx. x x))

ii. (λx. (λx. x x))

iii. (λx. (λx. x))

iv. (λx. x) (λx. x x)

v. DOESN’T STEP

(c) (λx. (λz. λx. x z) x) (λx. x x)

i. (λx. (λz. λx. x z) x) (λx. x x)

ii. (λz. λx′. (λx. x x) z) (λx. x x)

iii. (λz. λx. x z) (λx. x x)

iv. (λx. x (λx. x x))

v. DOESN’T STEP

4

4. (10 points) Recall the definitions of observational and behavioral equivalence from the lecture notes:

• Two terms s and t are observationally equivalent iff either both are normalizable (i.e., they reach
a normal form after a finite number of evaluation steps) or both are divergent.

• Terms s and t are behaviorally equivalent iff, for every finite sequence of values v1, v2, ..., vn

(including the empty sequence), the applications

s v1 v2 ... vn

and
t v1 v2 ... vn

are observationally equivalent.

For each of the following pairs of terms, write Yes if the terms are behaviorally equivalent and No if
they are not.

(a) plus c2 c1

c3

(b) tru

λx. λy. (λz. z) x

(c) λx. λy. x y

λx. λy. x (λz. z) y

(d) (λx. x x) (λx. x x)

λx. (λx. x x) (λx. x x)

(e) λx. λy. x y

λx. x

5

5. (12 points) Complete the following definition of a lambda-term equal that implements a recursive
equality function on Church numerals. For example, equal c0 c0 and equal c2 c2 should be behav-
iorally equivalent to tru, while equal c0 c1 and equal c5 c0 should be behaviorally equivalent to
fls. You may freely use the lambda-terms defined on page 3.

equal =

fix (λe.

λm. λn.

test (iszro m)

)

6

Simple types for numbers and booleans

6. (18 points) Recall the following properties of the language of numbers and booleans:

• Progress: If ` t : T, then either t is a value or else t −→ t′ for some t′.

• Preservation: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

• Uniqueness of types: Each term t has at most one type, and if t has a type, then there is
exactly one derivation of that typing.

Each part of this exercise suggests a different way of changing the language of typed arithmetic and
boolean expressions (see page 11 for reference). Note that these changes are not cumulative: each
part starts from the original language. In each part, for each property, indicate (by circling TRUE or
FALSE) whether the property remains true or becomes false after the suggested change. If a property
becomes false, give a counterexample.

(a) Suppose we add the following typing axiom:

pred (succ 0) : Bool

Progress: TRUE FALSE, for example. . .

Preservation: TRUE FALSE, for example. . .

Uniqueness of types: TRUE FALSE, for example. . .

7

(b) Suppose we add the following evaluation axiom:

if t1 then t2 else t3 −→ t1

Progress: TRUE FALSE, for example. . .

Preservation: TRUE FALSE, for example. . .

Uniqueness of types: TRUE FALSE, for example. . .

(c) Suppose we add a new type Foo and two new typing rules:

t1 : Nat

pred t1 : Foo

t1 : Foo

succ t1 : Nat

Progress: TRUE FALSE, for example. . .

Preservation: TRUE FALSE, for example. . .

Uniqueness of types: TRUE FALSE, for example. . .

8

7. (10 points) [For students in the PhD section only.] Suppose we add to the language of numbers
and booleans two new types, called True and False, plus the following rules. (Note how the two rules
for if allow types to be given to conditionals where the branches are not of the same type.)

true : True

false : False

t1 : True t2 : T2 t3 : T3

if t1 then t2 else t3 : T2

t1 : False t2 : T2 t3 : T3

if t1 then t2 else t3 : T3

(a) What type(s) can be derived for the following term?

if (if true then true else 0) then false else 0

(b) The inversion lemma tells us, for each syntactic form of terms, how terms of this form can be
given types by the typing rules—intuitively, it allows us to “read the typing relation backwards.”

Here is the inversion lemma from class for the original language of numbers and booleans:

Lemma:

• If true : R, then R = Bool.

• If false : R, then R = Bool.

• If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and t3 : R.

• If 0 : R, then R = Nat.

• If succ t1 : R, then R = Nat and t1 : Nat.

• If pred t1 : R, then R = Nat and t1 : Nat.

• If iszero t1 : R, then R = Bool and t1 : Nat.

Complete the statements of the following clauses for the enriched language.

Lemma [Inversion]:

• If true : T, then

• If if t1 then t2 else t3 : T, then

9

Simply typed lambda-calculus

The following questions are about the simply typed lambda-calculus over the base type Nat (not Bool,
as in the book!). For reference, the definition of this language appears on page 14 at the end of the
exam.

8. (6 points) Draw a typing derivation for the statement

∅ ` (λf:Nat→Nat. f 0) (λg:Nat. pred g) : Nat

10

9. (18 points) Here are the weakening and permutation lemmas for λ→:

Lemma [Weakening]: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T. Moreover, the latter
derivation has the same depth as the former.

Lemma [Permutation]: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T. Moreover,
the latter derivation has the same depth as the former.

Fill in the missing parts of the proof of the substitution lemma on the following page.

• In the T-Succ case, you need to fill in both the assumptions coming from the case analysis (the
three blank lines at the beginning of the case) and the body of the argument.

• Your wording does not need to exactly match what is in the book or lecture notes, but every
step required in the proof (use of an assumption, application of a lemma, use of the induction
hypothesis, or use of a typing rule) must be mentioned explicitly.

• The cases for application, zero, and predecessor are omitted; you don’t need to worry about these.

11

Lemma [Substitution]: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the depth of a derivation of Γ, x:S ` t : T. Proceed by cases on the final
typing rule used in the derivation.

Case T-Var: t = z

with z:T ∈ (Γ, x:S)

Case T-Abs: t = λy:T2.t1 T = T2→T1

Γ, x:S, y:T2 ` t1 : T1

By our conventions on choice of bound variable names, we may assume x 6= y and y /∈ FV(s).

Case T-Succ:

12

For reference: Boolean and arithmetic expressions

Syntax

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
true true value
false false value
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value

T ::= types
Bool type of booleans
Nat type of numbers

Evaluation

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′
1

if t1 then t2 else t3 −→ if t′
1
then t2 else t3

(E-If)

t1 −→ t′
1

succ t1 −→ succ t′
1

(E-Succ)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t′
1

pred t1 −→ pred t′
1

(E-Pred)

iszero 0 −→ true (E-IszeroZero)

iszero (succ nv1) −→ false (E-IszeroSucc)

t1 −→ t′
1

iszero t1 −→ iszero t′
1

(E-IsZero)

continued on next page...

13

Typing

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

0 : Nat (T-Zero)

t1 : Nat

succ t1 : Nat
(T-Succ)

t1 : Nat

pred t1 : Nat
(T-Pred)

t1 : Nat

iszero t1 : Bool
(T-IsZero)

14

For reference: Untyped lambda calculus

Syntax

t ::= terms
x variable
λx.t abstraction
t t application

v ::= values
λx.t abstraction value

Evaluation

t1 −→ t′
1

t1 t2 −→ t′
1
t2

(E-App1)

t2 −→ t′
2

v1 t2 −→ v1 t′
2

(E-App2)

(λx.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

15

For reference: Simply typed lambda-calculus with numbers

Syntax

t ::= terms
x variable
λx:T.t abstraction
t t application
0 constant zero
succ t successor
pred t predecessor

v ::= values
λx:T.t abstraction value
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value

T ::= types
Nat type of numbers
T→T type of functions

Evaluation

t1 −→ t′
1

t1 t2 −→ t′
1
t2

(E-App1)

t2 −→ t′
2

v1 t2 −→ v1 t′
2

(E-App2)

(λx:T1.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

t1 −→ t′
1

succ t1 −→ succ t′
1

(E-Succ)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t′
1

pred t1 −→ pred t′
1

(E-Pred)

continued on next page...

16

Typing

x:T ∈ Γ

Γ `x : T
(T-Var)

Γ, x:T1 `t2 : T2

Γ `λx:T1.t2 : T1→T2

(T-Abs)

Γ `t1 : T11→T12 Γ `t2 : T11

Γ `t1 t2 : T12

(T-App)

Γ ` 0 : Nat (T-Zero)

Γ ` t1 : Nat

Γ ` succ t1 : Nat
(T-Succ)

Γ ` t1 : Nat

Γ ` pred t1 : Nat
(T-Pred)

17

