
CIS 500 — Software Foundations

Midterm II

Answer key

November 8, 2006

Instructions

• This is a closed-book exam.

• You have 80 minutes to answer all of the questions. The entire exam is worth 80 points for students
in section 002 and 90 points for students in section 001 (there is one PhD-section-only problem).

• Questions vary significantly in difficulty, and the point value of a given question is not always exactly
proportional to its difficulty. Do not spend too much time on any one question.

• Partial credit will be given. All correct answers are short. The back side of each page and the companion
handout may be used as scratch paper.

• Good luck!

1

References

The following problems concern the simply typed lambda calculus with references. This system is summarized
on page 4 of the companion handout.

1. (5 points) Give a well-typed term whose evaluation (beginning in the empty store) will produce the
following store when evaluation terminates:

(l1 7→ λx:Nat. (!l2) x,
l2 7→ λx:Nat. (!l1) x)

Answer:
let a = ref (λx:Nat. x) in

let b = ref (λx:Nat. (!a) x) in

a := (λx:Nat. (!b) x)

Grading scheme: -1 or -2 for small errors: for example, a small fragment was not properly typed. -3
or -4 for more major errors: for example, allocating too many locations or badly mangled syntax for
your program.

2. (8 points)

(a) Give a well-typed term whose evaluation (beginning in the empty store) will produce the following
store when evaluation terminates.

µ = (l1 7→ 5,
l2 7→ l1,
l3 7→ l2)

Answer:
let a = ref 5 in

let b = ref a in

let c = ref b in

unit

(b) Give a store typing Σ corresponding to this store (i.e., such that ∅|Σ ⊢ µ).
Answer:

Σ = (l1 7→ Nat,
l2 7→ Ref Nat,
l3 7→ Ref (Ref Nat))

Grading scheme: Part (a): -1 or -2 for small errors: for example, slightly mangled syntax; -2 or -3 for
more major errors: for example, not allocating the right number of locations. Part (b): -1 for getting
the type of a given location wrong.

2

3. (8 points) Is there a well-typed term whose evaluation (beginning in the empty store) will produce
the following store when evaluation terminates?

µ = (l1 7→ l2,
l2 7→ l3,
l3 7→ l1)

If so, give it. If not, explain briefly why no such term exists.

Answer: No such term exists. There are two different ways to see this:

• Suppose it did. Then the preservation theorem would tell us that there is some store typing
Σ (extending the empty store typing) with respect to which the above store is well typed. But,
in such a store typing, we would have to have Σ(l1) = Ref (Σ(l2)) = Ref (Ref (Σ(l3))) =
Ref (Ref (Ref (Σ(l1))))—in other words, the typing assigned to l1 by Σ would have to include
itself as a proper sub-phrase. Since all types are finite in size, this cannot be.

• Observe that the very first reference cell allocated by a well-typed program must be to a non-Ref
type, since at that point there are no locations that could be used as the initial value of the cell.
Furthermore, the typing rules guarantee that any subsequent assignment to this reference cell must
be a value of the same (non-Ref) type. So it is not possible for a well-typed program to produce a
final store that does not contain at least one cell storing something other than a location.

Grading scheme:

• Wrong answer: 0

• Correct answer but completely wrong justification: 2

• Vaguely correct answer... “in the right spirit”: 4-5

• Correct answers with small errors: 6-8

3

Exceptions

This problem concerns the simply typed lambda calculus with exceptions carrying numeric values—i.e.,
the system defined in TAPL Section 14.3, where the “exception type” Texn is taken to be Nat. This
system is summarized on page 1 of the companion handout.

4. (9 points) For each of the following terms, first check whether the term is well typed. If it is, write its
type (if the term has multiple types, pick any one of them) and give the final result of evaluating the
term (which will be either a value or raise nv for some numeric value nv). If it is not, write ill typed.

(a) raise (if raise 1 then raise 2 else raise 3)

Answer: We can give this term any type. It evaluates to raise 1.

(b) try

succ (raise 4)

with

(λx:Nat. true)

Answer: ill-typed

(c) (try

(λx:Nat. raise 5)

with

(λx:Nat. x))

6

Answer: ill-typed

Grading scheme: 3 points for each part. The first part gets 1 point if the result is correct and 2 if the
type is correct.

4

Subtyping

The following problems concern the simply typed lambda calculus with subtyping (and records and
variants). This system is summarized on page 7 of the companion handout.

5. (8 points) Draw a derivation tree for the following subtyping statement:

{a:Top, b:{}→{}, c:{x:Nat}} <: {b:{}→Top, c:{}}

Answer:
D1 D3

{a:Top, b:{}→{}, c:{x:Nat}} <: {b:{}→Top, c:{}}
S-Trans

where derivation D1 is

{a:Top, b:{}→{}, c:{x:Nat}} <: {b:{}→{}, c:{x:Nat}, a:Top}
S-RcdPerm

D2

{a:Top, b:{}→{}, c:{x:Nat}} <: {b:{}→{}, c:{x:Nat}}
S-Trans

and where derivation D2 is

{b:{}→{}, c:{x:Nat}, a:Top} <: {b:{}→{}, c:{x:Nat}}
S-RcdWidth

and where derivation D3 is

{} <: {}
S-Refl

{} <: Top
S-Top

{}→{} <: {}→Top
S-Arrow

{x:Nat} <: {}
S-RcdWidth

{b:{}→{}, c:{x:Nat}} <: {b:{}→Top, c:{}}
S-RcdDepth

Grading scheme: (Approximately) one point off for each missing/misused rule.

5

6. (20 points)

Recall the following properties of the simply typed lambda-calculus with subtyping:

• Progress: If ⊢ t : T, then either t is a value or else t −→ t′ for some t′.

• Preservation: If Γ ⊢ t : T and t −→ t′, then Γ ⊢ t′ : T.

Each part of this exercise suggests a different way of changing the language. (These changes are not
cumulative: each part starts from the original language.) In each part, indicate (by circling TRUE or
FALSE) whether each property remains true or becomes false after the suggested change. If a property
becomes false, give a counterexample.

(a) Suppose we add the following typing rule:

Γ ⊢ t : S1→S2 S1 <: S2 S2 <: S1 S2 <: T2

Γ ⊢ t : T1→T2

Progress: Answer: True

Preservation: Answer: True

(b) Suppose we add the following evaluation rule:

{} −→ (λx:Top. x)

Progress: Answer: True

Preservation: Answer: False: for example, {} has type {} but steps to(λx:Top. x), which does
not have type {}.

6

(c) Suppose we add the following subtyping rule:

<> <: {}

Progress: Answer: True

Preservation: Answer: True

(d) Suppose we add the following subtyping rule:

{} <: <>

Progress: Answer: False: for example, case {} of <foo=x> ⇒ x is well typed but stuck.

Preservation: Answer: True

Grading scheme: 4 points for the first and third parts, 6 for the second and fourth, evenly divided
between progress and preservation.

7

7. (22 points) Fill in the missing steps in the proof of the subtyping inversion lemma for arrow types
from Chapter 15. Your wording does not need to exactly match what is in the book or lecture notes,
but every step required in the proof (use of an assumption, use of the induction hypothesis, or use of
a subtyping rule) must be mentioned explicitly.

Lemma: If S <: T1→T2, then S has the form S1→S2, with T1 <: S1 and S2 <: T2.

Proof: By induction on subtyping derivations. By inspection of the subtyping rules, it is clear that the
final rule in the derivation of S <: T1→T2 must be S-Refl, S-Trans, or S-Arrow.

Case S-Refl: S = T1→T2

Answer: Both T1 <: T1 and T2 <: T2 follow by reflexivity.

Case S-Trans: S <: U U <: T1→T2

Answer: If the final rule is S-Trans, then we have subderivations with conclusions S <: U and
U <: T1→T2 for some type U. Applying the induction hypothesis to the second subderivation, we see
that U has the form U1→U2, with T1 <: U1 and U2 <: T2. Now, since we know that U is an arrow type,
we can apply the induction hypothesis to the first subderivation to obtain S = S1→S2 with U1 <: S1 and
S2 <: U2. Finally, we can use S-Trans twice to reassemble the facts we have established, obtaining
T1 <: S1 (from T1 <: U1 and U1 <: S1) and S2 <: T2 (from S2 <: U2 and U2 <: T2).

Case S-Arrow: S = S1→S2 T1 <: S1 S2 <: T2

Answer: Immediate.

Grading scheme: 6 points for reflexivity and arrow cases; 10 for transitivity case. 1 or 2 points off
for extraneous stuff; 4 for putting the two uses of the IH in the wrong order; 2 for generally correct
answers but mangled explanations; 4 or 5 for more serious errors.

8

8. (10 points) (For students in the PhD section only.)

Section 15.5 in the book discusses two ways of combining subtyping with references. The first uses just
the Ref type constructor, with a simple subtyping rule:

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1

(S-Ref)

The second, more refined, treatment introduces two new type constructors, Source and Sink—intuitively,
Source T is thought of as a capability to read values of type T from a cell (but which does not permit
assignment), while Sink T is a capability to write to a cell. Ref T is intuitively a combination of these
two capabilities, giving permission both to read and to write.

The typing rule for reference creation returns a Ref (it is unchanged from Chapter 13), while the rules
for dereferencing and assignment are changed to demand only the appropriate capability. The details
of these rules are not important for this question, but they are reproduced, for reference, on 9 of the
companion handout.

The subtyping relation is extended with a rules stating that the Source constructor is contravariant,
the Sink constructor is covariant, and the Ref constructor can be promoted to either Source or Sink.

S1 <: T1

Source S1 <: Source T1

(S-Source)

T1 <: S1

Sink S1 <: Sink T1

(S-Sink)

Ref T1 <: Source T1 (S-RefSource)

Ref T1 <: Sink T1 (S-RefSink)

If we know that S <: T and we know something about the shape of T, the subtype inversion lemma
gives us information about the shape of S and the subtype relationships that must hold between the
sub-expressions of S and T. For example, question 7 above asked you to prove the arrow case.

Fill in appropriate statements for the cases of the subtyping inversion lemma for the constructors Ref,
Source, and Sink. You do not need to give proofs.

(a) If S <: Ref T1, then Answer: S = Ref S1 for some S1 with S1 <: T1 and T1 <: S1.

(b) If S <: Source T1, then Answer: either: (1) S = Ref S1 for some S1 with S1 <: T1, or (2)
S = Source S1 for some S1 with S1 <: T1.

(c) If S <: Sink T1, then Answer: either: (1) S = Ref S1 for some S1 with T1 <: S1, or (2)
S = Sink S1 for some S1 with T1 <: S1.

Grading scheme: Answers varied considerably, so the grading was basically done on a case by case
basis. But here were some common mistakes:

• Missing Ref cases in parts 2 and 3: -3

• Too many constraints in parts 2 and 3: -2

9

Companion handout

Full definitions of the systems
used in the exam

Simply-typed lambda calculus with error handling (and numbers and
booleans), using Nat as the Texn type

Syntax

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test
x variable
λx:T.t abstraction
t t application
raise t raise exception
try t with t handle exceptions

v ::= values
true true value
false false value
nv numeric value
λx:T.t abstraction value

nv ::= numeric values
0 zero value

succ nv successor value

T ::= types
Bool type of booleans
Nat type of natural numbers
T→T type of functions

Γ ::= type environments
∅ empty type env.

Evaluation t −→ t′

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t′
1

if t1 then t2 else t3 −→ if t′
1
then t2 else t3

(E-If)

t1 −→ t′
1

succ t1 −→ succ t′
1

(E-Succ)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

1

t1 −→ t′
1

pred t1 −→ pred t′
1

(E-Pred)

iszero 0 −→ true (E-IszeroZero)

iszero (succ nv1) −→ false (E-IszeroSucc)

t1 −→ t′
1

iszero t1 −→ iszero t′
1

(E-IsZero)

t1 −→ t′
1

t1 t2 −→ t′
1
t2

(E-App1)

t2 −→ t′
2

v1 t2 −→ v1 t′
2

(E-App2)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

(raise v11) t2 −→ raise v11 (E-AppRaise1)

v1 (raise v21) −→ raise v21 (E-AppRaise2)

t1 −→ t′
1

raise t1 −→ raise t′
1

(E-Raise)

raise (raise v11) −→ raise v11 (E-RaiseRaise)

if raise v11 then t2 else t3 −→ raise v11 (E-IfRaise)

try v1 with t2 −→ v1 (E-TryV)

try raise v11 with t2

−→ t2 v11

(E-TryRaise)

t1 −→ t′
1

try t1 with t2 −→ try t′
1
with t2

(E-Try)

Typing Γ ⊢ t : T

Γ ⊢ true : Bool (T-True)

Γ ⊢ false : Bool (T-False)

Γ ⊢ t1 : Bool Γ ⊢ t2 : T Γ ⊢ t3 : T

Γ ⊢ if t1 then t2 else t3 : T
(T-If)

Γ ⊢ 0 : Nat (T-Zero)

Γ ⊢ t1 : Nat

Γ ⊢ succ t1 : Nat
(T-Succ)

2

Γ ⊢ t1 : Nat

Γ ⊢ pred t1 : Nat
(T-Pred)

Γ ⊢ t1 : Nat

Γ ⊢ iszero t1 : Bool
(T-IsZero)

x:T ∈ Γ

Γ ⊢ x : T
(T-Var)

Γ, x:T1 ⊢ t2 : T2

Γ ⊢ λx:T1.t2 : T1→T2

(T-Abs)

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12

(T-App)

Γ ⊢ t1 : Nat

Γ ⊢ raise t1 : T
(T-Exn)

Γ ⊢ t1 : T Γ ⊢ t2 : Nat→T

Γ ⊢ try t1 with t2 : T
(T-Try)

3

Simply-typed lambda calculus with references
(and Unit, Nat, Bool)

Syntax

t ::= terms
unit constant unit
x variable
λx:T.t abstraction
t t application
ref t reference creation
!t dereference
t:=t assignment
l store location
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
unit constant unit
λx:T.t abstraction value
l store location
true true value
false false value
nv numeric value

T ::= types
Unit unit type
T→T type of functions
Ref T type of reference cells
Bool type of booleans
Nat type of natural numbers

µ ::= stores
∅ empty store
µ, l = v location binding

Γ ::= type environments
∅ empty type env.
Γ, x:T term variable binding

Σ ::= store typings
∅ empty store typing
Σ, l:T location typing

nv ::= numeric values
0 zero value
succ nv successor value

4

Evaluation t|µ −→ t′|µ′

t1|µ −→ t′
1
|µ′

t1 t2|µ −→ t′
1
t2|µ

′
(E-App1)

t2|µ −→ t′
2
|µ′

v1 t2|µ −→ v1 t′
2
|µ′

(E-App2)

(λx:T11.t12) v2|µ −→ [x 7→ v2]t12|µ (E-AppAbs)

l /∈ dom(µ)

ref v1|µ −→ l|(µ, l 7→ v1)
(E-RefV)

t1|µ −→ t′
1
|µ′

ref t1|µ −→ ref t′
1
|µ′

(E-Ref)

µ(l) = v

!l|µ −→ v|µ
(E-DerefLoc)

t1|µ −→ t′
1
|µ′

!t1|µ −→ !t′
1
|µ′

(E-Deref)

l:=v2|µ −→ unit|[l 7→ v2]µ (E-Assign)

t1|µ −→ t′
1
|µ′

t1:=t2|µ −→ t′
1
:=t2|µ

′
(E-Assign1)

t2|µ −→ t′
2
|µ′

v1:=t2|µ −→ v1:=t
′

2
|µ′

(E-Assign2)

if true then t2 else t3|µ −→ t2|µ (E-IfTrue)

if false then t2 else t3|µ −→ t3|µ (E-IfFalse)

t1|µ −→ t′
1
|µ′

if t1 then t2 else t3|µ −→ if t′
1
then t2 else t3|µ

′
(E-If)

t1|µ −→ t′
1
|µ′

succ t1|µ −→ succ t′
1
|µ′

(E-Succ)

pred 0|µ −→ 0|µ (E-PredZero)

pred (succ nv1)|µ −→ nv1|µ (E-PredSucc)

t1|µ −→ t′
1
|µ′

pred t1|µ −→ pred t′
1
|µ′

(E-Pred)

iszero 0|µ −→ true|µ (E-IszeroZero)

5

iszero (succ nv1)|µ −→ false|µ (E-IszeroSucc)

t1|µ −→ t′
1
|µ′

iszero t1|µ −→ iszero t′
1
|µ′

(E-IsZero)

Typing Γ|Σ ⊢ t : T

Γ|Σ ⊢ unit : Unit (T-Unit)

x:T ∈ Γ

Γ|Σ ⊢ x : T
(T-Var)

Γ, x:T1|Σ ⊢ t2 : T2

Γ|Σ ⊢ λx:T1.t2 : T1→T2

(T-Abs)

Γ|Σ ⊢ t1 : T11→T12 Γ|Σ ⊢ t2 : T11

Γ|Σ ⊢ t1 t2 : T12

(T-App)

Σ(l) = T1

Γ|Σ ⊢ l : Ref T1

(T-Loc)

Γ|Σ ⊢ t1 : T1

Γ|Σ ⊢ ref t1 : Ref T1

(T-Ref)

Γ|Σ ⊢ t1 : Ref T11

Γ|Σ ⊢ !t1 : T11

(T-Deref)

Γ|Σ ⊢ t1 : Ref T11 Γ|Σ ⊢ t2 : T11

Γ|Σ ⊢ t1:=t2 : Unit
(T-Assign)

Γ|Σ ⊢ true : Bool (T-True)

Γ|Σ ⊢ false : Bool (T-False)

Γ|Σ ⊢ t1 : Bool Γ|Σ ⊢ t2 : T Γ|Σ ⊢ t3 : T

Γ|Σ ⊢ if t1 then t2 else t3 : T
(T-If)

Γ|Σ ⊢ 0 : Nat (T-Zero)

Γ|Σ ⊢ t1 : Nat

Γ|Σ ⊢ succ t1 : Nat
(T-Succ)

Γ|Σ ⊢ t1 : Nat

Γ|Σ ⊢ pred t1 : Nat
(T-Pred)

Γ|Σ ⊢ t1 : Nat

Γ|Σ ⊢ iszero t1 : Bool
(T-IsZero)

6

Simply-typed lambda calculus with subtyping
(and records and variants)

Syntax

t ::= terms
x variable
λx:T.t abstraction
t t application
{li=ti

i∈1..n} record
t.l projection
<l=t> (no as) tagging
case t of <li=xi>⇒ti

i∈1..n case

v ::= values
λx:T.t abstraction value
{li=vi

i∈1..n} record value

T ::= types
{li:Ti

i∈1..n} type of records
Top maximum type
T→T type of functions
<li:Ti

i∈1..n> type of variants

Γ ::= type environments
∅ empty type env.

Evaluation t −→ t′

t1 −→ t′
1

t1 t2 −→ t′
1
t2

(E-App1)

t2 −→ t′
2

v1 t2 −→ v1 t′
2

(E-App2)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

{li=vi
i∈1..n}.lj −→ vj (E-ProjRcd)

case (<lj=vj> as T) of <li=xi>⇒ti
i∈1..n −→ [xj 7→ vj]tj (E-CaseVariant)

t0 −→ t′
0

case t0 of <li=xi>⇒ti
i∈1..n −→ case t′

0
of <li=xi>⇒ti

i∈1..n
(E-Case)

ti −→ t′i

<li=ti> as T −→ <li=t
′

i> as T
(E-Variant)

Typing Γ ⊢ t : T

for each i Γ ⊢ ti : Ti

Γ ⊢ {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-Rcd)

7

Γ ⊢ t1 : {li:Ti
i∈1..n}

Γ ⊢ t1.lj : Tj

(T-Proj)

x:T ∈ Γ

Γ ⊢ x : T
(T-Var)

Γ, x:T1 ⊢ t2 : T2

Γ ⊢ λx:T1.t2 : T1→T2

(T-Abs)

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12

(T-App)

Γ ⊢ t : S S <: T

Γ ⊢ t : T
(T-Sub)

Γ ⊢ t1 : T1

Γ ⊢ <l1=t1> : <l1:T1>
(T-Variant)

Γ ⊢ t0 : <li:Ti
i∈1..n>

for each i Γ, xi:Ti ⊢ ti : T

Γ ⊢ case t0 of <li=xi>⇒ti
i∈1..n : T

(T-Case)

Subtyping S <: T

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

S <: Top (S-Top)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S-Arrow)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

<li:Ti
i∈1..n> <: <li:Ti

i∈1..n+k> (S-VariantWidth)

for each i Si <: Ti

<li:Si
i∈1..n> <: <li:Ti

i∈1..n>
(S-VariantDepth)

<kj:Sj
j∈1..n> is a permutation of <li:Ti

i∈1..n>

<kj:Sj
j∈1..n> <: <li:Ti

i∈1..n>
(S-VariantPerm)

8

Typing rules for Source, Sink, and Ref constructors

Γ|Σ ⊢ t1 : T1

Γ|Σ ⊢ ref t1 : Ref T1

(T-Ref)

Γ|Σ ⊢ t1 : Source T11

Γ|Σ ⊢ !t1 : T11

(T-Deref)

Γ|Σ ⊢ t1 : Sink T11 Γ|Σ ⊢ t2 : T11

Γ|Σ ⊢ t1:=t2 : Unit
(T-Assign)

9

