
CIS 500
Software Foundations

Fall 2007

Lecture 23

Administrivia
• HW12 due next Monday, 10AM

• Final exam: Tuesday, Dec 18, 12-2
• Location: Moore 216 (not Wu and Chen!)

• Review questions for the last part of the class will be available
about a week before the exam

• My office hours:
• 5–6:30 this afternoon
• Then not until next semester

• Leonid’s office hours next week will be posted to the class
mailing list

Modeling Java

About models (of things in general)

No such thing as a “perfect model” — The nature of a model is to
abstract away from details!

So models are never just “good” [or “bad”]: they are always “good
[or bad] for some specific set of purposes.”

Models of Java
Lots of different purposes −→ lots of different kinds of models

• Source-level vs. bytecode level

• Large (inclusive) vs. small (simple) models

• Models of type system vs. models of run-time features (not
entirely separate issues)

• Models of specific features (exceptions, concurrency,
reflection, class loading, ...)

• Models designed for extension

Featherweight Java
Purpose: model “core OO features” and their types and nothing
else.

History:

• Originally proposed by a Penn PhD student (Atsushi Igarashi)
as a tool for analyzing GJ (“Java plus generics”), which later
became Java 1.5

• Since used by many others for studying a wide variety of Java
features and proposed extensions

Things left out
• Reflection, concurrency, class loading, inner classes, ...

• Exceptions, loops, ...

• Interfaces, overloading, ...

• Assignment (!!)

Things left in
• Classes and objects

• Methods and method invocation

• Fields and field access

• Inheritance (including open recursion through this)

• Casting

Example
class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {
Object fst;
Object snd;

Pair(Object fst, Object snd) {
super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {
return new Pair(newfst, this.snd); }

}

Conventions
For syntactic regularity...

• Always include superclass (even when it is Object)

• Always write out constructor (even when trivial)

• Always call super from constructor (even when no arguments
are passed)

• Always explicitly name receiver object in method invocation or
field access (even when it is this)

• Methods always consist of a single return expression

• Constructors always
• Take same number (and types) of parameters as fields of the

class
• Assign constructor parameters to “local fields”
• Call super constructor to assign remaining fields
• Do nothing else

Formalizing FJ

Nominal type systems
Big dichotomy in the world of programming languages:

• Structural type systems:
• What matters about a type (for typing, subtyping, etc.) is just

its structure.
• Names are just convenient (but inessential) abbreviations.

• Nominal type systems:
• Types are always named.
• Typechecker mostly manipulates names, not structures.
• Subtyping is declared explicitly by programmer (and checked

for consistency by compiler).

Advantages of Structural Systems
Somewhat simpler, cleaner, and more elegant (no need to always
work wrt. a set of “name definitions”)

Easier to extend (e.g. with parametric polymorphism)

(Caveat: when recursive types are considered, some of this
simplicity and elegance slips away...)

Advantages of Nominal Systems
Recursive types fall out easily

Using names everywhere makes typechecking (and subtyping, etc.)
easy and efficient

Type names are also useful at run-time (for casting, type testing,
reflection, ...).

Java (like most other mainstream languages) is a nominal system.

Representing objects
Our decision to omit assignment has a nice side effect...

The only ways in which two objects can differ are (1) their classes
and (2) the parameters passed to their constructor when they were
created.

All this information is available in the new expression that creates
an object. So we can identify the created object with the new
expression.

Formally: object values have the form new C(v)

FJ Syntax

Syntax (terms and values)

t ::= terms
x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C) t cast

v ::= values
new C(v) object creation

Syntax (methods and classes)

K ::= constructor declarations
C(C f) {super(f); this.f=f;}

M ::= method declarations
C m(C x) {return t;}

CL ::= class declarations
class C extends C {C f; K M}

Subtyping

Subtyping
As in Java, subtyping in FJ is declared.

Assume we have a (global, fixed) class table CT mapping class
names to definitions.

CT(C) = class C extends D {...}

C <: D

C <: C

C <: D D <: E

C <: E

More auxiliary definitions
From the class table, we can read off a number of other useful
properties of the definitions (which we will need later for
typechecking and operational semantics)...

Field(s) lookup

fields(Object) = ∅

CT(C) = class C extends D {C f; K M}
fields(D) = D g

fields(C) = D g, C f

Method type lookup

CT(C) = class C extends D {C f; K M}
B m (B x) {return t;} ∈ M

mtype(m, C) = B→B

CT(C) = class C extends D {C f; K M}
m is not defined in M

mtype(m, C) = mtype(m, D)

Method body lookup

CT(C) = class C extends D {C f; K M}
B m (B x) {return t;} ∈ M

mbody(m, C) = (x, t)

CT(C) = class C extends D {C f; K M}
m is not defined in M

mbody(m, C) = mbody(m, D)

Valid method overriding

mtype(m, D) = D→D0 implies C = D and C0 = D0

override(m, D, C→C0)

Evaluation

The example again
class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {
Object fst;
Object snd;

Pair(Object fst, Object snd) {
super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {
return new Pair(newfst, this.snd); }

}

Evaluation
Projection:

new Pair(new A(), new B()).snd −→ new B()

Evaluation
Casting:

(Pair)new Pair(new A(), new B())
−→ new Pair(new A(), new B())

Evaluation
Method invocation:

new Pair(new A(), new B()).setfst(new B())

−→
[
newfst 7→ new B(),
this 7→ new Pair(new A(),new B())

]
new Pair(newfst, this.snd)

i.e., new Pair(new B(), new Pair(new A(), new B()).snd)

((Pair) (new Pair(new Pair(new A(),new B()), new A())
.fst).snd

−→ ((Pair)new Pair(new A(),new B())).snd
−→ new Pair(new A(), new B()).snd
−→ new B()

Evaluation rules

fields(C) = C f

(new C(v)).fi −→ vi
(E-ProjNew)

mbody(m, C) = (x, t0)

(new C(v)).m(u)
−→ [x 7→ u, this 7→ new C(v)]t0

(E-InvkNew)

C <: D

(D)(new C(v)) −→ new C(v)
(E-CastNew)

plus some congruence rules...

t0 −→ t′
0

t0.f −→ t′
0.f

(E-Field)

t0 −→ t′
0

t0.m(t) −→ t′
0.m(t)

(E-Invk-Recv)

ti −→ t′
i

v0.m(v, ti, t) −→ v0.m(v, t′
i, t)

(E-Invk-Arg)

ti −→ t′
i

new C(v, ti, t) −→ new C(v, t′
i, t)

(E-New-Arg)

t0 −→ t′
0

(C)t0 −→ (C)t′
0

(E-Cast)

Typing

Typing rules

x:C ∈ Γ

Γ ` x : C
(T-Var)

Typing rules

Γ ` t0 : C0 fields(C0) = C f

Γ ` t0.fi : Ci
(T-Field)

Typing rules

Γ ` t0 : D D <: C

Γ ` (C)t0 : C
(T-UCast)

Γ ` t0 : D C <: D C 6= D

Γ ` (C)t0 : C
(T-DCast)

Why two cast rules?

Because that’s how Java does it!

Typing rules

Γ ` t0 : D D <: C

Γ ` (C)t0 : C
(T-UCast)

Γ ` t0 : D C <: D C 6= D

Γ ` (C)t0 : C
(T-DCast)

Why two cast rules? Because that’s how Java does it!

Typing rules

Γ ` t0 : C0

mtype(m, C0) = D→C
Γ ` t : C C <: D

Γ ` t0.m(t) : C
(T-Invk)

Note that this rule “has subsumption built in” — i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

Typing rules

Γ ` t0 : C0

mtype(m, C0) = D→C
Γ ` t : C C <: D

Γ ` t0.m(t) : C
(T-Invk)

Note that this rule “has subsumption built in” — i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

Typing rules

Γ ` t0 : C0

mtype(m, C0) = D→C
Γ ` t : C C <: D

Γ ` t0.m(t) : C
(T-Invk)

Note that this rule “has subsumption built in” — i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

Java typing is algorithmic
The Java typing relation is defined in the algorithmic style, for (at
least) two reasons:

1. In order to perform static overloading resolution, we need to
be able to speak of “the type” of an expression

2. We would otherwise run into trouble with typing of
conditional expressions (see discussion in TAPL).

FJ Typing rules

fields(C) = D f
Γ ` t : C C <: D

Γ ` new C(t) : C
(T-New)

Typing rules (methods, classes)

x : C, this : C ` t0 : E0 E0 <: C0

CT(C) = class C extends D {...}
override(m, D, C→C0)

C0 m (C x) {return t0;} OK in C

K = C(D g, C f) {super(g); this.f = f;}
fields(D) = D g M OK in C

class C extends D {C f; K M} OK

Properties

Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)(new Object())

Progress
Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)(new Object())

Progress
Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)(new Object())

Formalizing Progress
Solution: Weaken the statement of the progress theorem to

A well-typed FJ term is either a value or can reduce one
step or is stuck at a failing cast.

Formalizing this takes a little more work...

Evaluation Contexts
E ::= evaluation contexts

[] hole
E.f field access
E.m(t) method invocation (rcv)
v.m(v,E,t) method invocation (arg)
new C(v,E,t) object creation (arg)
(C)E cast

Evaluation contexts capture the notion of the “next subterm to be
reduced,” in the sense that, if t −→ t′, then we can express t and
t′ as t = E [r] and t′ = E [r′] for a unique E , r, and r′, with
r −→ r′ by one of the computation rules E-ProjNew,
E-InvkNew, or E-CastNew.

Progress
Theorem [Progress]: Suppose t is a closed, well-typed normal
form. Then either (1) t is a value, or (2) t −→ t′ for some t′, or
(3) for some evaluation context E , we can express t as
t = E [(C)(new D(v))], with D 6<: C.

Preservation
Theorem [Preservation]: If Γ ` t : C and t −→ t′, then Γ ` t′ : C′

for some C′ <: C.

Proof: Straightforward induction.

???

Preservation
Theorem [Preservation]: If Γ ` t : C and t −→ t′, then Γ ` t′ : C′

for some C′ <: C.

Proof: Straightforward induction. ???

Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() −→ (A)new B()

Preservation?
Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() −→ (A)new B()

Preservation?
Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() −→ (A)new B()

Solution: “Stupid Cast” typing rule
Add another typing rule, marked “stupid” to indicate that an
implementation should generate a warning if this rule is used.

Γ ` t0 : D C 6<: D D 6<: C
stupid warning

Γ ` (C)t0 : C
(T-SCast)

This is an example of a modeling technicality; not very interesting
or deep, but we have to get it right if we’re going to claim that the
model is an accurate representation of (this fragment of) Java.

Solution: “Stupid Cast” typing rule
Add another typing rule, marked “stupid” to indicate that an
implementation should generate a warning if this rule is used.

Γ ` t0 : D C 6<: D D 6<: C
stupid warning

Γ ` (C)t0 : C
(T-SCast)

This is an example of a modeling technicality; not very interesting
or deep, but we have to get it right if we’re going to claim that the
model is an accurate representation of (this fragment of) Java.

Correspondence with Java
Let’s try to state precisely what we mean by “FJ corresponds to
Java”:

Claim:

1. Every syntactically well-formed FJ program is also a
syntactically well-formed Java program.

2. A syntactically well-formed FJ program is typable in FJ
(without using the T-SCast rule.) iff it is typable in Java.

3. A well-typed FJ program behaves the same in FJ as in Java.
(E.g., evaluating it in FJ diverges iff compiling and running it
in Java diverges.)

Of course, without a formalization of full Java, we cannot prove
this claim. But it’s still very useful to say precisely what we are
trying to accomplish—e.g., it provides a rigorous way of judging
counterexamples. (Cf. “conservative extension” between logics.)

Alternative approaches to casting
• Loosen preservation theorem

• Use big-step semantics

Recap...

What is “software foundations”?
Software foundations (a.k.a. “theory of programming languages”)
is the study of the meaning of programs.

A main goal is finding ways to describe program behaviors that are
both precise and abstract.

Why study software foundations?
• To be able to prove specific facts about particular programs

(i.e., program verification)

• To develop intuitions for informal reasoning about programs

• To prove general facts about all the programs in a given
programming language (e.g., safety or security properties)

• As a foundation for a wide range of static analyses (e.g.,
Microsoft’s current suite of tools for checking device drivers)

• To understand language features (and their interactions)
deeply and develop principles for better language design

What I hope you got out of the course
• A more sophisticated perspective on programs, programming

languages, and the activity of programming
• How to view programs and whole languages as formal,

mathematical objects
• How to make and prove rigorous claims about them
• Detailed study of a range of basic language features

• Deep intuitions about key language properties such as type
safety

• Familiarity with today’s best practices for language design,
description, and analysis

• Fun hacking Coq

What next?

The rest of TAPL
Many more core topics are covered in TAPL.

• References (mutable state)

• Exceptions

• Recursive types (including a rigorous treatment of induction
and co-induction)

• Parametric polymorphism
• Universal and existential types
• Bounded quantification
• Refinement of the imperative object model
• ML-style type inference

• Type operators
• Higher-order bounded quantification
• A purely functional object model

The Research Literature
With this course under your belt, you are ready to directly address
research papers in programming languages.

This is a big area, and each sub-area has its own special techniques
and notations, but you now have all the basic intuitions needed to
study these on your own. The End

