
CIS 500 — Software Foundations

Final Exam

Answer key

December 18, 2007

Operational semantics

The questions in this section concern a variant of the language of untyped arithmetic and boolean expressions
that we used in the course. The original definition of this language is reproduced, for your reference, on
page 16.

Suppose, now, that we define an alternate version of the single-step evaluation relation that drops the
premise nvalue n1 from the rules E_PredSucc and E_IszeroSucc:

Inductive alteval : tm -> tm -> Prop :=
| AE_IfTrue : forall t1 t2,

alteval (tm_if tm_true t1 t2)
t1

| AE_IfFalse : forall t1 t2,
alteval (tm_if tm_false t1 t2)

t2
| AE_If : forall t1 t1’ t2 t3,

alteval t1 t1’
-> alteval (tm_if t1 t2 t3)

(tm_if t1’ t2 t3)
| AE_Succ : forall t1 t1’,

alteval t1 t1’
-> alteval (tm_succ t1)

(tm_succ t1’)
| AE_PredZero :

alteval (tm_pred tm_zero)
tm_zero

| AE_PredSucc : forall t1,
(* nvalue t1 -> *)
alteval (tm_pred (tm_succ t1))

t1
| AE_Pred : forall t1 t1’,

alteval t1 t1’
-> alteval (tm_pred t1)

(tm_pred t1’)
| AE_IszeroZero :

alteval (tm_iszero tm_zero)
tm_true

| AE_IszeroSucc : forall t1,
(* nvalue t1 -> *)
alteval (tm_iszero (tm_succ t1))

tm_false
| AE_Iszero : forall t1 t1’,

alteval t1 t1’
-> alteval (tm_iszero t1)

(tm_iszero t1’).

1

1. (2 points) Is the alternate evaluation relation deterministic? That is, is the following lemma provable?
(Write “yes” or “no.” If you write “no,” give a counter-example.)

Lemma alteval_deterministic : forall t t’ t’’,
alteval t t’

-> alteval t t’’
-> t’ = t’’.

Answer: No. A counter-example is t = pred (succ (pred zero))

2. (3 points) Can every value that results from applying eval many times also be obtained by applying
alteval many times?

Formally, if we define

Notation evalmany := (refl_trans_closure _ eval).
Notation altevalmany := (refl_trans_closure _ alteval).

then is the lemma

Lemma eval_result__alteval_result : forall t t’,
evalmany t t’

-> value t’
-> altevalmany t t’.

provable? Write “yes” or “no.” If you write “no,” give a counter-example.

Answer: Yes.

3. (3 points) Conversely, can every value that results from applying alteval many times also be obtained
by applying eval many times? Write “yes” or “no.” If you write “no,” give a counter-example.

Lemma alteval_result__eval_result : forall t t’,
altevalmany t t’

-> value t’
-> evalmany t t’.

Answer: No. A counter-example is t = tm_iszero (tm_succ tm_true).

2

4. (12 points) Complete the following Fixpoint definition so that it defines a functional version of the
alteval relation — i.e., so that alt_simplify_step t = Some _ t′ whenever alteval t t′ holds
and alt_simplify_step t = None _ if there is no t′ such that alteval t t′.

Fixpoint alt_simplify_step (t:tm) struct t : option tm :=
match t with
| tm_if t1 t2 t3 =>

match alt_simplify_step t1 with
| None => match t1 with

| tm_true => Some _ t2
| tm_false => Some _ t3
| _ => None _
end

| Some t1’ => Some _ (tm_if t1’ t2 t3)
end

| tm_succ t1 =>
match alt_simplify_step t1 with
| None => None _
| Some t1’ => Some _ (tm_succ t1’)
end

| tm_pred t1 =>
(* FILL IN HERE: *)
match alt_simplify_step t1 with
| None => match t1 with

| tm_zero => Some _ tm_zero
| tm_succ t2 => Some _ t2
end

| Some t1’ => Some _ (tm_pred t1’)
end

| tm_iszero t1 =>
(* FILL IN HERE: *)
match alt_simplify_step t1 with
| None => match t1 with

| tm_zero => Some _ tm_true
| tm_succ t2 => Some _ tm_false
end

| Some t1’ => Some _ (tm_iszero t1’)
end

| _ =>
(* FILL IN HERE: *)
None _

end.

Grading scheme:

• 7 points for the first blank, 3 for the second, 2 for the last

• -1 for minor mistakes

• -5 for interchanging None and Some cases

3

Untyped Lambda-Calculus

The following questions are about the untyped lambda calculus. For reference, the definition of this
language and names for several specific lambda-terms (c_zero, pls, etc., etc.) appear on page 18.

5. (4 points) Here are the definitions of pls, c_one, and c_two:

Notation pls := (\m, \n, \s, \z, m @ s @ (n @ s @ z)).
Notation c_one := (\s, \z, s @ z).
Notation c_two := (\s, \z, s @ (s @ z)).

Write the normal form of the term (pls @ c_one @ c_two).

Answer:
\s, \z, c_one @ s @ (c_two @ s @ z),
since
(\m, \n, \s, \z, m @ s @ (n @ s @ z)) @ c_one @ c_two −→
(\n, \s, \z, c_one @ s @ (n @ s @ z)) @ c_two −→
\s, \z, c_one @ s @ (c_two @ s @ z)

4

Recall the definitions of observational and behavioral equivalence in the untyped lambda-calculus:

• Two terms s and t are observationally equivalent iff either both are normalizable (i.e., they reach
a normal form after a finite number of evaluation steps) or both are divergent.

• Terms s and t are behaviorally equivalent iff, for every finite list of closed values [v_1, v_2, ..., v_n]
(including the empty list), the applications

s @ v_1 @ v_2 ... @ v_n

and
t @ v_1 @ v_2 ... @ v_n

are observationally equivalent.

6. (9 points) Let us write “s and t are distinguished by [v_1, v_2, ..., v_n]” to mean that

s @ v_1 @ v_2 ... @ v_n

and
t @ v_1 @ v_2 ... @ v_n

are not observationally equivalent.

(a) Consider the following pair of terms:

s = \x, \y, x
t = \x, \y, y

Circle one of the following choices:

i. s and t are behaviorally equivalent
ii. s and t are distinguished by [poisonpill]

iii. s and t are distinguished by [tru, fls]

iv. s and t are distinguished by [poisonpill, tru]

v. s and t are distinguished by [tru, poisonpill]

vi. s and t are distinguished by [poisonpill, tru, fls]

vii. s and t are distinguished by [tru, poisonpill, fls]

viii. s and t are distinguished by some other list of closed values

Answer: vi

(b) Consider the following pair of terms:

s = (\x, x @ x) @ (\x, x)
t = \x, \y, y

Circle one of the following choices:

i. s and t are behaviorally equivalent
ii. s and t are distinguished by [] (the empty list)
iii. s and t are distinguished by [poisonpill]

iv. s and t are distinguished by [tru, fls]

v. s and t are distinguished by [poisonpill, tru]

vi. s and t are distinguished by [tru, poisonpill]

vii. s and t are distinguished by some other list of closed values

Answer: v

5

(c) Consider the following pair of terms:

s = \s, \z, s @ (s @ z)
t = \s, \z, s @ (s @ (s @ z))

Circle one of the following choices:

i. s and t are behaviorally equivalent
ii. s and t are distinguished by [] (the empty list)
iii. s and t are distinguished by [poisonpill]

iv. s and t are distinguished by [poisonpill, tru]

v. s and t are distinguished by [tru, poisonpill]

vi. s and t are distinguished by [(\x,poisonpill)]

vii. s and t are distinguished by [(\x,\x,\x,poisonpill)]

viii. s and t are distinguished by some other list of closed values

Answer: viii

6

Subtyping

The questions in this section concern the simply typed lambda-calculus with records and subtyping.
For reference, the definition of this language appears on page 20.

7. (7 points) Suppose we have types S, T, U, and V with S <: T and U <: V. Which of the following
subtyping assertions are then true? (Circle T or F for each.)

(a) T-->S <: T-->S

T F

(b) Top-->U <: S-->Top

T F

(c) T-->T-->U <: S-->S-->V

T F

(d) (T-->T)-->U <: (S-->S)-->V

T F

(e) ((T-->S)-->T)-->U <: ((S-->T)-->S)-->V

T F

(f) [[a~S, b~V]] <: [[a~T, B~U]]

T F

(g) [[a~S; S]] <: [[a~T; Top]]

T F

7

8. (4 points) What is the smallest type T that makes the following assertion true?

empty |- (\x~Top, x) @ [|a==(\z~A,z),b==(\z~B,z)|] ~ T

Answer:

T = Top

9. (4 points) What is the smallest type T that makes the following assertion true?

exists S,
empty |- (\r~[[x~A; T]], (r#y) @ (r#x)) ~ S

Answer: There is none – any record type that has at least a field y (of appropriate type) will make
the assertion true.

10. (4 points) What is the largest type T that makes the same assertion true?

exists S,
empty |- (\r~[[x~A; T]], (r#y) @ (r#x)) ~ S

Answer:

T = [[y~A-->Top]]

Grading scheme: 2 points for some valid type

11. (7 points) How many supertypes does the type

[[x~A, y~C->C]]

have? That is, how many different types T are there such that [[x~A, y~C->C]] <: T?

(We consider two types to be different if they are written differently, even if each is a subtype of the
other. For example, [[x~A,y~B]] and [[y~B,x~A]] are different.)

Answer: I count 19...

[[x~A, y~C->C]] [[y~Top, x~A]]
[[x~Top, y~C->C]] [[y~Top, x~Top]]
[[x~A, y~C->Top]] [[x~A]]
[[x~Top, y~C->Top]] [[x~Top]]
[[x~A, y~Top]] [[y~C->C]]
[[x~Top, y~Top]] [[y~C->Top]]
[[y~C->C, x~A]] [[y~Top]]
[[y~C->C, x~Top]] [[]]
[[y~C->Top, x~A]] Top
[[y~C->Top, x~Top]]

• 19 rightarrow 7 points
• 12-18 rightarrow 5 points (only if examples are shown)
• 5-11 rightarrow 3 points
• ≤4 or infinite rightarrow 0 points

8

12. (10 points) Recall the following properties of the simply typed lambda-calculus with subtyping:

Theorem preservation : forall t t’ T,
empty |- t ~ T

-> eval t t’
-> empty |- t’ ~ T.

Theorem progress : forall t T,
empty |- t ~ T

-> value t \/ exists t’, eval t t’.

Each part of this problem suggests a different way of changing the language. (These changes are not
cumulative: each part starts from the original language.) In each part, indicate (by circling TRUE or
FALSE) whether each property remains true or becomes false after the suggested change. If a property
becomes false, give a counterexample.

(a) Suppose we add the following evaluation rule:

| E_Funny : forall t,
eval ([||] @ t) (t @ [||]).

Progress: Answer: True
Preservation: Answer: True

(b) Suppose we add the same evaluation rule

| E_Funny : forall t,
eval ([||] @ t) (t @ [||]).

and the following new typing rule:

| T_Funny : forall t,
empty |- [||] ~ Top-->Top

Progress: Answer: True
Preservation: Answer: False: For example, [||] @ (\x~A,x) has type Top, but it steps to
(\x~A,x) @ [||], which is ill-typed.

Grading scheme: 2 points for correct True/False answers; 2 points for correct counterexample.

13. (5 points) Is the following statement true or false? Briefly explain your answer.

forall T,
~(exists n, T = ty_base n)

-> exists S,
S <: T /\ S <> T.

Answer: False: T = Top-->A is a counterexample.

9

14. (16 points) Below we give the complete Coq proof for the key technical lemma sub_inversion_arrow.
Add an informal explanation of the proof, using the blanks provided. Your explanation should give
a sufficiently clear understanding of the proof that, if we took just the explanation and gave it to a
skilled Coq user, they could easily reproduce the formal proof. You should not include low-level details
that such a user could easily fill in for themselves. (Obviously, this is a matter of taste to some extent.
We will take this into account when grading.)

Lemma sub_inversion_arrow : forall U V1 V2,
U <: V1 --> V2

-> exists U1, exists U2, (U=U1-->U2) /\ (V1<:U1) /\ (U2<:V2).
Proof.
(* By induction on a derivation of U <: V1 --> V2. Since the

right-hand side is an arrow type, most of the subtyping rules
cannot apply; there are just three cases to consider. *)

intros U V1 V2 Hs.
remember (V1-->V2) as V.
generalize dependent V2. generalize dependent V1.
(subtyping_cases (induction Hs) CASE);

subst; intros; try solve [solve by inversion].
CASE "S_Refl".
(* If the final rule is S_Refl, then U = V1-->V2 and

we can choose U1=V1 and U2=V2; the result then follows by
S_Refl. *)

apply ex_intro with (witness:=V1). apply ex_intro with (witness:=V2).
subst. inversion H.
apply conj. reflexivity. apply conj; apply S_Refl; assumption.

CASE "S_Trans".
(* If the final rule is S_Trans, then there is some S such

that U <: S and S <: V1-->V2. By the IH, there are some S1
and S2 such that S=S1-->S2, V1<:S1, and S2<:V2. By the IH
again, there are some U1 and U2 such that U=U1-->U2, S1<:U1,
and U2<:S2. By S_Trans, V1<:U1 and U2<:V2. *)

apply IHHs2 in HeqV. destruct HeqV. destruct H.
rename witness into U1. rename witness0 into U2.
destruct H. destruct H0.
apply IHHs1 in H. destruct H. destruct H.
rename witness into S1. rename witness0 into S2.
destruct H. destruct H2.
apply ex_intro with (witness := S1).
apply ex_intro with (witness := S2).
apply conj. assumption. apply conj.
apply S_Trans with (U := U1); assumption.
apply S_Trans with (U := U2); assumption.

CASE "S_Arrow".
(* If the final rule is S_Arrow, then U=U1-->U2, with V1<:U1

and U2<:V2, which is exactly what we need. *)
apply ex_intro with (witness := S1).
apply ex_intro with (witness := S2).
inversion HeqV. subst.
auto using conj.

Qed.

10

Grading scheme:

• 3 points for the first blank.

– +3 for induction on the right thing
– -1/2 for miscellaneous wrong stuff

• 3 points for the second blank.

– -1 for no V1-->V2

– -1 for no S_Refl

– -1/2 for miscellaneous wrong stuff

• 7 points for the third blank.

– -1 – about S
– -1 – IH details (each)
– -1 for trans
– -5 for major confusion
– -1/2 for miscellaneous wrong stuff

• 3 points for the fourth blank.

– -1 for wrong set up
– -1/2 for miscellaneous wrong stuff

11

15. (7 points) Among the technical lemmas appearing in the theory of the simply typed lambda-calculus
with subtyping is this one:

Lemma subtypes__well_formed : forall S T,
S <: T

-> well_formed S /\ well_formed T.

The proof of this lemma goes by induction on the derivation of S <: T.

Now suppose we change the statement of the lemma to

Lemma subtypes__well_formed : forall S T,
S <: T

-> well_formed T.

and again start the proof by induction on the derivation of S <: T. Will we succeed in completing the
proof? Briefly explain.

Answer: No: The proof will get stuck in the S_Arrow case, where T = T1-->T2 and S = S1-->S2. The
induction principle gives us the induction hypotheses well_formed S1 and well_formed T2, from
which we cannot assemble a proof of well_formed T1-->T2. Grading scheme:

• 7 points for “No” plus mentioning S_Arrow

• 4 points for “No” with a vague but not incorrect explanation

• 3 points for “No” with a bogus explanation

• 1 point for “Yes”

12

Algorithmic Subtyping

16. (7 points) The “declarative” typing relation Gamma |- t ~ T defined on page 20 cannot be translated
directly (“clause for clause”) into a recursive Fixpoint definition that, given Gamma and t, returns a T
such that Gamma |- t ~ T (or returns None to indicate that no such T exists). Explain why not.

Answer: The T_Sub rule overlaps with all of the other rules, so a “direct” clause-for-clause imple-
mentation would have to involve backtracking. Worse, the function clause corresponding to the T_Sub

would make a recursive call with the same arguments, causing an infinite loop. Grading scheme:

• 7 points for either correct reason

• 4 points for mentioning that T_App is a problem / relation not a function / variable not bound

13

Featherweight Java

The definition of Featherweight Java is summarized on page 24 at the end.

17. (8 points) The preservation theorem for Featherweight Java is not stated like this:

Theorem preservation : forall CT Gamma t t’ C,
CT >> Gamma |- t ~ C

-> eval CT t t’
-> CT >> Gamma |- t’ ~ C.

(1) Explain what is wrong, (2) give an example FJ term that breaks this version of preservation, and
(3) state the theorem correctly.

For (2), you may assume that the class table defines the classes A, B, and Pair (all extending Object),
as in the lecture and homework assignment.

Answer: This version of the theorem is false because the types of programs can strictly decrease (in the
subtype relation) during evaluation. For instance, if the class table includes a class A, then

(Object)(new A())

has type Object but steps to new A(), which does not have type Object (it only has type A). Here is
the good version:

Theorem preservation : forall CT Gamma t t’ C,
CT >> Gamma |- t ~ C

-> eval CT t t’
-> exists C’, (subtyping CT C’ C) /\ (CT >> Gamma |- t’ ~ C’).

Grading scheme:

• 2 points for part 1

• 3 points for part 2

• 3 points for part 3 (one for mentioning exists, one for mentioning subtyping, and one more for
being completely correct)

14

Coq

Recall that, in Coq, the notation “exists x, P” is actually a shorthand for “ex _ (fun x=>P)”,
where the proposition ex is defined like this:

Inductive ex (X : Type) (P : X -> Prop) : Prop :=
ex_intro : forall witness:X, P witness -> ex X P.

18. (4 points) Similarly, the notation “A /\ B” is a shorthand for “and A B”, where and is an inductively
defined proposition. Fill in the blank to complete the definition of and.

Answer:

Inductive and (A B : Prop) : Prop :=
conj : A -> B -> (and A B).

Grading scheme:

• -1 for no constructor

• -1 for introducing forall

• -2 for introducing vars

19. (4 points) The notation “A \/ B” is a shorthand for “or A B”, where or is an inductively defined
proposition. Fill in the blank to complete its definition.

Answer:

Inductive or (A B : Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.

Grading scheme:

• -4 for including only one case

• -1 if no constructor

• -2 for introducing vars

• -3 for True instead of or A B, given everything else is correct

15

For reference: Boolean and arithmetic expressions

Inductive tm : Set :=
| tm_true : tm
| tm_false : tm
| tm_if : tm -> tm -> tm -> tm
| tm_zero : tm
| tm_succ : tm -> tm
| tm_pred : tm -> tm
| tm_iszero : tm -> tm.

Inductive bvalue : tm -> Prop :=
| bv_true : bvalue tm_true
| bv_false : bvalue tm_false.

Inductive nvalue : tm -> Prop :=
| nv_zero : nvalue tm_zero
| nv_succ : forall t, nvalue t -> nvalue (tm_succ t).

Definition value (t:tm) := bvalue t \/ nvalue t.

Inductive eval : tm -> tm -> Prop :=
| E_IfTrue : forall t1 t2,

eval (tm_if tm_true t1 t2)
t1

| E_IfFalse : forall t1 t2,
eval (tm_if tm_false t1 t2)

t2
| E_If : forall t1 t1’ t2 t3,

eval t1 t1’
-> eval (tm_if t1 t2 t3)

(tm_if t1’ t2 t3)
| E_Succ : forall t1 t1’,

eval t1 t1’
-> eval (tm_succ t1)

(tm_succ t1’)
| E_PredZero :

eval (tm_pred tm_zero)
tm_zero

| E_PredSucc : forall t1,
nvalue t1

-> eval (tm_pred (tm_succ t1))
t1

| E_Pred : forall t1 t1’,
eval t1 t1’

-> eval (tm_pred t1)
(tm_pred t1’)

| E_IszeroZero :
eval (tm_iszero tm_zero)

tm_true
| E_IszeroSucc : forall t1,

16

nvalue t1
-> eval (tm_iszero (tm_succ t1))

tm_false
| E_Iszero : forall t1 t1’,

eval t1 t1’
-> eval (tm_iszero t1)

(tm_iszero t1’).

Inductive ty : Set :=
| ty_bool : ty
| ty_nat : ty.

Inductive has_type : tm -> ty -> Prop :=
| T_True :

has_type tm_true ty_bool
| T_False :

has_type tm_false ty_bool
| T_If : forall t1 t2 t3 T,

has_type t1 ty_bool
-> has_type t2 T
-> has_type t3 T
-> has_type (tm_if t1 t2 t3) T

| T_Zero :
has_type tm_zero ty_nat

| T_Succ : forall t1,
has_type t1 ty_nat

-> has_type (tm_succ t1) ty_nat
| T_Pred : forall t1,

has_type t1 ty_nat
-> has_type (tm_pred t1) ty_nat

| T_Iszero : forall t1,
has_type t1 ty_nat

-> has_type (tm_iszero t1) ty_bool.

17

For reference: Untyped lambda-calculus

Definition name := nat.

Inductive tm : Set :=
| tm_const : name -> tm
| tm_var : name -> tm
| tm_app : tm -> tm -> tm
| tm_abs : name -> tm -> tm.

Notation "‘ n" := (tm_const n) (at level 19).
Notation "! n" := (tm_var n) (at level 19).
Notation "\ x , t" := (tm_abs x t) (at level 21).
Notation "r @ s" := (tm_app r s) (at level 20).

Fixpoint only_constants (t:tm) {struct t} : yesno :=
match t with
| tm_const _ => yes
| tm_app t1 t2 => both_yes (only_constants t1) (only_constants t2)
| _ => no
end.

Inductive value : tm -> Prop :=
| v_const : forall t,

only_constants t = yes -> value t
| v_abs : forall x t,

value (\x, t).

Fixpoint subst (x:name) (s:tm) (t:tm) {struct t} : tm :=
match t with
| ‘c => ‘c
| !y => if eqname x y then s else t
| \y, t1 => if eqname x y then t else (\y, subst x s t1)
| t1 @ t2 => (subst x s t1) @ (subst x s t2)
end.

Inductive eval : tm -> tm -> Prop :=
| E_AppAbs : forall x t12 v2,

value v2
-> eval ((\x, t12) @ v2) ({x |-> v2} t12)

| E_App1 : forall t1 t1’ t2,
eval t1 t1’

-> eval (t1 @ t2) (t1’ @ t2)
| E_App2 : forall v1 t2 t2’,

value v1
-> eval t2 t2’
-> eval (v1 @ t2) (v1 @ t2’).

18

Notation tru := (\t, \f, t).
Notation fls := (\t, \f, f).

Notation bnot := (\b, b @ fls @ tru).
Notation and := (\b, \c, b @ c @ fls).
Notation or := (\b, \c, b @ tru @ c).
Notation test := (\b, \t, \f, b @ t @ f @ (\x,x)).

Notation pair := (\f, \s, (\b, b @ f @ s)).
Notation fst := (\p, p @ tru).
Notation snd := (\p, p @ fls).

Notation c_zero := (\s, \z, z).
Notation c_one := (\s, \z, s @ z).
Notation c_two := (\s, \z, s @ (s @ z)).
Notation c_three := (\s, \z, s @ (s @ (s @ z))).
Notation scc := (\n, \s, \z, s @ (n @ s @ z)).
Notation pls := (\m, \n, \s, \z, m @ s @ (n @ s @ z)).
Notation tms := (\m, \n, m @ (pls @ n) @ c_zero).
Notation iszro := (\m, m @ (\x, fls) @ tru).
Notation zz := (pair @ c_zero @ c_zero).
Notation ss := (\p, pair @ (snd @ p) @ (pls @ c_one @ (snd @ p))).
Notation prd := (\m, fst @ (m @ ss @ zz)).

Notation omega := ((\x, x @ x) @ (\x, x @ x)).
Notation poisonpill := (\y, omega).

Notation Z := (\f,
(\y, (\x, f @ (\y, x @ x @ y))

@ (\x, f @ (\y, x @ x @ y))
@ y)).

Notation f_fact := (\f,
\n,

test
@ (iszro @ n)
@ (\z, c_one)
@ (\z, tms @ n @ (f @ (prd @ n)))).

Notation fact := (Z @ f_fact).

19

For reference: Simply Typed Lambda-Calculus with Records and Subtyping

Inductive ty : Set :=
| ty_top : ty
| ty_base : nat -> ty
| ty_arrow : ty -> ty -> ty
| ty_rcd_nil : ty
| ty_rcd_cons : nat -> ty -> ty -> ty.

Inductive tm : Set :=
| tm_var : nat -> tm
| tm_app : tm -> tm -> tm
| tm_abs : nat -> ty -> tm -> tm
| tm_rcd_nil : tm
| tm_rcd_cons : nat -> tm -> tm -> tm
| tm_proj : tm -> nat -> tm.

Notation A := (ty_base one).
Notation B := (ty_base two).
Notation C := (ty_base three).
Notation Top := ty_top.
Notation "S --> T" := (ty_arrow S T) (at level 20, right associativity).
Notation "[[]]" := (ty_rcd_nil).
Notation "[[l1 ~ T1 ; T2]]" := (ty_rcd_cons l1 T1 T2).

Notation "! n" := (tm_var n) (at level 39).
Notation "\ x ~ T , t" := (tm_abs x T t) (at level 42).
Notation "r @ s" := (tm_app r s) (at level 40, left associativity).
Notation "r # s" := (tm_proj r s) (at level 41).
Notation "[| |]" := (tm_rcd_nil).
Notation "[| l1 == t1 ; t2 |]" := (tm_rcd_cons l1 t1 t2).

Notation "[[l1 ~ T1]]" := ([[l1~T1; [[]]]]).
Notation "[[l1 ~ T1 , l2 ~ T2]]" := ([[l1~T1; [[l2~T2]]]]).
Notation "[[l1 ~ T1 , l2 ~ T2 , l3 ~ T3]]" := ([[l1~T1; [[l2~T2,l3~T3]]]]).
Notation "[| l1 == T1 |]" := ([| l1==T1; [||] |]).
Notation "[| l1 == T1 , l2 == T2 |]" := ([| l1==T1; [|l2==T2|] |]).
Notation "[| l1 == T1 , l2 == T2 , l3 == T3 |]" := ([| l1==T1; [|l2==T2,l3==T3|] |]).

Fixpoint subst (x:nat) (s:tm) (t:tm) {struct t} : tm :=
match t with
| !y => if eqnat x y then s else t
| \y~T, t1 => if eqnat x y then t else \y~T, {x |-> s}t1
| t1 @ t2 => ({x |-> s}t1) @ ({x |-> s}t2)
| [||] => [||]
| [| l==t1; t2 |] => [| l=={x |-> s}t1; {x |-> s}t2 |]
| t # k => ({x |-> s}t) # k
end

where "{ x |-> s } t" := (subst x s t).

20

Inductive value : tm -> Prop :=
| v_abs : forall x T t,

value (\x~T, t)
| v_rcd_nil :

value [||]
| v_rcd_cons : forall l t1 t2,

value t1
-> value t2
-> value [| l==t1; t2|].

Inductive eval : tm -> tm -> Prop :=
| E_AppAbs : forall x T t12 v2,

value v2
-> eval ((\x~T, t12) @ v2) ({x |-> v2} t12)

| E_App1 : forall t1 t1’ t2,
eval t1 t1’

-> eval (t1 @ t2) (t1’ @ t2)
| E_App2 : forall v1 t2 t2’,

value v1
-> eval t2 t2’
-> eval (v1 @ t2) (v1 @ t2’)

| E_Rcdcons1 : forall k t1 t1’ t2,
eval t1 t1’

-> eval [|k==t1;t2|] [|k==t1’;t2|]
| E_Rcdcons2 : forall k t1 t2 t2’,

value t1
-> eval t2 t2’
-> eval [|k==t1;t2|] [|k==t1;t2’|]

| E_ProjRcdcons1 : forall k t1 t2,
value t1

-> value t2
-> eval ([|k==t1;t2|] # k) t1

| E_ProjRcdcons2 : forall k k’ t1 t2,
value t1

-> value t2
-> k <> k’
-> eval ([|k’==t1;t2|] # k) (t2 # k)

| E_Proj : forall k t t’,
eval t t’

-> eval (t # k) (t’ # k).

Inductive doesn’t_bind (k:nat) : ty -> Prop :=
| db_nil :

doesn’t_bind k [[]]
| db_cons : forall k’ T1 T2,

k <> k’
-> doesn’t_bind k T2
-> doesn’t_bind k [[k’~T1;T2]].

Inductive record_type : ty -> Prop :=
| rt_nil :

record_type [[]]

21

| rt_cons : forall k T1 T2,
record_type [[k~T1;T2]].

Inductive well_formed : ty -> Prop :=
| wf_top :

well_formed Top
| wf_base : forall n,

well_formed (ty_base n)
| wf_arrow : forall T1 T2,

well_formed T1
-> well_formed T2
-> well_formed (T1-->T2)

| wf_rcdnil :
well_formed [[]]

| wf_rcdcons : forall k T1 T2,
well_formed T1

-> well_formed T2
-> record_type T2
-> doesn’t_bind k T2
-> well_formed [[k~T1;T2]].

Inductive subtyping : ty -> ty -> Prop :=
| S_Refl : forall T,

well_formed T
-> T <: T

| S_Trans : forall S U T,
S <: U

-> U <: T
-> S <: T

| S_Top : forall S,
well_formed S

-> S <: Top
| S_Arrow : forall S1 S2 T1 T2,

T1 <: S1
-> S2 <: T2
-> S1-->S2 <: T1-->T2

| S_Rcdwidth : forall k T1 T2,
well_formed [[k~T1;T2]]

-> [[k~T1;T2]] <: [[]]
| S_Rcddepth : forall k S1 S2 T1 T2,

S1 <: T1
-> S2 <: T2
-> well_formed [[k~S1;S2]]
-> well_formed [[k~T1;T2]]
-> [[k~S1;S2]] <: [[k~T1;T2]]

| S_Rcdperm : forall k1 k2 S1 S2 S3,
well_formed [[k1~S1; [[k2~S2; S3]]]]

-> k1 <> k2
-> [[k1~S1; [[k2~S2; S3]]]] <: [[k2~S2; [[k1~S1; S3]]]]

where "S <: T" := (subtyping S T).

22

Notation context := (alist ty).

Definition empty : context := nil _.

Fixpoint ty_rcd_lookup (k:nat) (t:ty) {struct t} : option ty :=
match t with
| ty_rcd_cons k’ T’ t’ =>

if eqnat k k’ then Some _ T’ else ty_rcd_lookup k t’
| _ =>

None _
end.

Definition ty_rcd_binds (k:nat) (Tk:ty) (T:ty) :=
ty_rcd_lookup k T = Some _ Tk.

Inductive typing : context -> tm -> ty -> Prop :=
| T_Var : forall Gamma x T,

binds _ x T Gamma
-> well_formed T
-> Gamma |- (!x) ~ T

| T_Abs : forall Gamma x T1 T2 t,
well_formed T1

-> [(x,T1)] ++ Gamma |- t ~ T2
-> Gamma |- (\x~T1, t) ~ T1-->T2

| T_App : forall S T Gamma t1 t2,
Gamma |- t1 ~ (S-->T)

-> Gamma |- t2 ~ S
-> Gamma |- (t1 @ t2) ~ T

| T_Rcdnil : forall Gamma,
Gamma |- [||] ~ [[]]

| T_Rcdcons : forall Gamma k t1 t2 T1 T2,
Gamma |- t1 ~ T1

-> Gamma |- t2 ~ T2
-> well_formed [[k~T1;T2]]
-> Gamma |- [|k==t1;t2|] ~ [[k~T1;T2]]

| T_Proj : forall Gamma k Tk t T,
Gamma |- t ~ T

-> ty_rcd_binds k Tk T
-> Gamma |- t # k ~ Tk

| T_Sub : forall Gamma t S T,
Gamma |- t ~ S

-> S <: T
-> Gamma |- t ~ T

where "Gamma |- t ~ T" := (typing Gamma t T).

23

For reference: Featherweight Java

Definition varName :Set := nat.
Definition fieldName :Set := nat.
Definition methodName :Set := nat.
Definition className :Set := nat.

Inductive tm : Set :=
| tm_var : varName -> tm (* variable *)
| tm_field : tm -> fieldName -> tm (* field access *)
| tm_invoke : tm -> methodName -> list tm -> tm (* method invocation *)
| tm_new : className -> list tm -> tm (* object creation *)
| tm_cast : className -> tm -> tm. (* cast *)

Definition this := zero.

Inductive value : tm -> Prop :=
| v_new : forall C vl,

value_list vl
-> value (tm_new C vl)

with value_list : list tm -> Prop :=
| v_nil : value_list (nil _)
| v_cons : forall v l,

value v
-> value_list l
-> value_list (v :: l).

Inductive K : Set :=
| constructor :

className -> list (varName * className)
-> list varName -> list varName -> K.

Inductive M : Set :=
| method :

className -> methodName
-> list (varName * className) -> tm -> M.

Inductive CL : Set :=
| class :

className -> className
-> list (fieldName * className) -> K -> list M -> CL.

Definition CT : Set := alist CL.

Definition Object := zero.

Inductive subtyping : CT -> className -> className -> Prop :=
| S_Refl : forall CT C,

subtyping CT C C
| S_Trans : forall CT C D E,

subtyping CT C D

24

-> subtyping CT D E
-> subtyping CT C E

| S_Ext : forall CT C D Cf K M,
lookup _ C CT = Some _ (class C D Cf K M)

-> subtyping CT C D.

(* Field lookup *)
Inductive fields : CT -> className -> list (fieldName * className) -> Prop :=

| f_obj : forall CT C,
C = Object -> fields CT C (nil _)

| f_class : forall CT C D Cf K M’ Dg,
lookup _ C CT = Some _ (class C D Cf K M’)

-> fields CT D Dg
-> fields CT C (Dg ++ Cf).

(* Search for a method in a list of method delarations *)
Fixpoint mlookup (m : methodName) (l : list M) {struct l} : option M :=
match l with
| nil => None _
| (method T m’ Cx t) :: l’ =>

if eqnat m m’ then Some _ (method T m’ Cx t) else mlookup m l’
end.

(* Method type lookup *)
Inductive mtype : CT -> methodName -> className -> list className -> className -> Prop :=

| mt_class : forall CT m C D Cf K M’ Cx t B’ B,
lookup _ C CT = Some _ (class C D Cf K M’)

-> mlookup m M’ = Some _ (method B m Cx t)
-> B’ = map _ _ (fun p => match p with (f,s) => s end) Cx
-> mtype CT m C B’ B

| mt_super : forall CT m C D Cf K M’ B’ B,
lookup _ C CT = Some _ (class C D Cf K M’)

-> mlookup m M’ = None _
-> mtype CT m D B’ B
-> mtype CT m C B’ B.

(* Method body lookup *)
Inductive mbody : CT -> methodName -> className -> list varName -> tm -> Prop :=

| mb_class : forall CT m C D Cf K M’ Cx t x B,
lookup _ C CT = Some _ (class C D Cf K M’)

-> mlookup m M’ = Some _ (method B m Cx t)
-> x = map _ _ (fun p => match p with (f,s) => f end) Cx
-> mbody CT m C x t

| mb_super : forall CT m C D Cf K M’ x t,
lookup _ C CT = Some _ (class C D Cf K M’)

-> mlookup m M’ = None _
-> mbody CT m D x t
-> mbody CT m C x t.

Inductive method_not_defined_in_class : CT -> methodName -> className -> Prop :=
| mndic_obj : forall CT m,

method_not_defined_in_class CT m Object

25

| mndic_class : forall CT m C D Cf K M’,
lookup _ C CT = Some _ (class C D Cf K M’)

-> mlookup m M’ = None _
-> method_not_defined_in_class CT m D
-> method_not_defined_in_class CT m C.

(* Valid method overriding *)
Inductive override : CT -> methodName -> className -> list className -> className -> Prop :=

| m_notboundinsuper : forall CT m D C’ C0,
method_not_defined_in_class CT m D

-> override CT m D C’ C0
| m_over : forall CT m D C’ C0 D’ D0,

mtype CT m D D’ D0
-> C’ = D’
-> C0=D0
-> override CT m D C’ C0.

Fixpoint subst (x: list varName) (u: list tm)
(C:className) (v:list tm)
(t:tm) {struct t} : tm :=

match t with
| tm_var this => tm_new C v
| tm_var y =>

match lookup _ y (combine _ _ x u) with
| Some u1 => u1
| None => t

end
| tm_field t1 f =>

tm_field (subst x u C v t1) f
| tm_invoke t1 m l =>

tm_invoke (subst x u C v t1) m
((fix subst_list (x: list varName) (u: list tm)

(C:className) (v:list tm) (tl: list tm)
{struct tl} : list tm :=

match tl with
| nil => nil _
| (h::t) => (subst x u C v h) :: (subst_list x u C v t)

end) x u C v l)
| tm_new D l =>

tm_new D ((fix subst_list (x: list varName) (u: list tm)
(C:className) (v:list tm) (tl: list tm)
{struct tl} : list tm :=

match tl with
| nil => nil _
| (h::t) => (subst x u C v h) :: (subst_list x u C v t)
end) x u C v l)

| tm_cast D t1 => tm_cast D (subst x u C v t1)
end.

Inductive eval : CT -> tm -> tm -> Prop :=
| E_ProjNew : forall CT C v fj vj Cf,

value_list v

26

-> fields CT C Cf
-> (lookup _ fj

(combine _ _ (map _ _ (fun p => match p with (f,s) => f end) Cf) v))
= Some _ vj

-> eval CT (tm_field (tm_new C v) fj) (vj)
| E_InvkNew : forall CT C v m u t0 x,

value_list v
-> value_list u
-> mbody CT m C x t0
-> eval CT (tm_invoke (tm_new C v) m u) (subst x u C v t0)

| E_CastNew : forall CT C D v,
value_list v

-> subtyping CT C D
-> eval CT (tm_cast D (tm_new C v)) (tm_new C v)

| E_Field : forall CT f t t’,
eval CT t t’

-> eval CT (tm_field t f) (tm_field t’ f)
| E_Invk_Recv : forall CT l m t0 t0’,

eval CT t0 t0’
-> eval CT (tm_invoke t0 m l) (tm_invoke t0’ m l)

| E_Invk_Arg : forall CT v0 m v ti ti’ t,
value v0

-> value_list v
-> eval CT ti ti’
-> eval CT (tm_invoke v0 m (v ++ [ti] ++ t))

(tm_invoke v0 m (v ++ [ti’] ++ t))
| E_New_Arg : forall CT C v ti ti’ t,

value_list v
-> eval CT ti ti’
-> eval CT (tm_new C (v ++ [ti] ++ t)) (tm_new C (v ++ [ti’] ++ t))

| E_Cast : forall CT C t t’,
eval CT t t’

-> eval CT (tm_cast C t) (tm_cast C t’).

Notation context := (alist className).

Definition empty : context := nil _.

Inductive typing : CT -> context -> tm -> className -> Prop :=
| T_Var : forall CT Gamma x C,

binds _ x C Gamma
-> CT >> Gamma |- (tm_var x) ~ C

| T_Field : forall CT Gamma t0 fi Ci C0 Cf,
CT >> Gamma |- t0 ~ C0

-> fields CT C0 Cf
-> (lookup _ fi Cf) = Some _ Ci
-> CT >> Gamma |- (tm_field t0 fi) ~ Ci

| T_Invk : forall CT Gamma t0 m tl C C0 Dl,
CT >> Gamma |- t0 ~ C0

-> mtype CT m C0 Dl C
-> typing_list CT Gamma tl Dl
-> CT >> Gamma |- (tm_invoke t0 m tl) ~ C

27

| T_New : forall CT Gamma tl C Df,
fields CT C Df

-> typing_list CT Gamma tl
(map _ _ (fun p => match p with (f,s) => s end) Df)

-> CT >> Gamma |- (tm_new C tl) ~ C
| T_UCast : forall CT Gamma t0 C D,

CT >> Gamma |- t0 ~ D
-> subtyping CT D C
-> CT >> Gamma |- (tm_cast C t0) ~ C

| T_DCast : forall CT Gamma t0 C D,
CT >> Gamma |- t0 ~ D

-> subtyping CT C D
-> C<>D
-> CT >> Gamma |- (tm_cast C t0) ~ C

| T_SCast : forall CT Gamma t0 C D,
CT >> Gamma |- t0 ~ D

-> ~ (subtyping CT C D)
-> ~ (subtyping CT D C)
-> CT >> Gamma |- (tm_cast C t0) ~ C

with typing_list : CT -> context -> list tm -> list className -> Prop :=
| TL_nil : forall CT Gamma,

typing_list CT Gamma (nil _) (nil _)
| TL_cons : forall CT Gamma t tl C Cl T,

typing CT Gamma t T
-> subtyping CT T C

-> typing_list CT Gamma tl Cl
-> typing_list CT Gamma (t::tl) (C::Cl)

where "CT >> Gamma |- t ~ T" := (typing CT Gamma t T).

(* Method typing *)
Inductive mtyping : CT -> className -> methodName

-> list (varName * className) -> tm ->className -> Prop :=
| m_ok : forall CT C0 m Cx t0 C D Cl Df K Ml E0,

CT >> (this,C) :: Cx |- t0 ~ E0
-> subtyping CT E0 C0
-> lookup _ C CT = Some _ (class C D Cf K Ml)
-> override CT m D Cl C0
-> mtyping CT C0 m Cx t0 C.

Hint Constructors mtyping.

Inductive mlist_typing : CT -> list M -> className -> Prop :=
| m_ok_nil : forall CT C,

mlist_typing CT (nil _) C
| m_ok_cons : forall CT M C Ml C0 m Cx t0,

M = method C0 m Cx t0
-> mtyping CT C0 m Cx t0 C
-> mlist_typing CT (M :: Ml) C.

Hint Constructors mlist_typing.

(* Class typing *)

28

Inductive ctyping : CT -> className -> className
-> list (fieldName * className) -> K -> list M -> Prop :=

| c_ok : forall CT C D Cf K Ml Dg,
K = constructor C (Dg ++ Cf)

(map _ _ (fun p => match p with (f,s) => f end) Dg)
(map _ _ (fun p => match p with (f,s) => f end) Cf)

-> fields CT D Dg
-> mlist_typing CT Ml C
-> ctyping CT C D Cf K Ml.

Definition wf_class_table (ct : CT) : Prop :=
forall C D Cf K M’,

lookup _ C ct = Some _ (class C D Cf K M’)
-> ctyping ct C D Cf K M’.

29

