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Typed arithmetic expressions

The full definition of the language of typed arithmetic and boolean expressions is reproduced, for your
reference, on page 12.

1. (5 points) Answer “yes” or “no” for each part.

(a) In this language, every normal form is a value.
Answer: No: For example, tm_pred tm_true is a normal form but not a value.

(b) In this language, every well-typed normal form is a value.
Answer: Yes: This is the content of the progress theorem.

(c) In this language, every value is a normal form.
Answer: Yes: This can proved by induction on values.

(d) In this language, the single-step evaluation relation is a partial function.
Answer: Yes: This is the determinacy theorem.

(e) In this language, the single-step evaluation relation is a total function.
Answer: No: normal forms do not evaluate to anything.
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Untyped Lambda-Calculus

The following questions are about the untyped lambda calculus. For reference, the definition of this
language and names for a number of specific lambda-terms (c_zero, pls, etc., etc.) appear on page 14
at the end of the exam.

2. (8 points) For each of the following terms, write down how many steps of single-step evaluation it
takes for the term to reach a normal form. If the term is already a normal form, write “0”. If the term
has no normal form, write “diverges”.

(a) fst @ (pair @ tru @ fls)

Answer: 6 steps
fst @ ((\f, \s, \b, b @ f @ s) @ tru @ fls) −→
fst @ ((\s, \b, b @ tru @ s) @ fls) −→
fst (\b, b @ tru @ fls) −→
(\b, b @ tru @ fls) @ tru −→
tru @ tru @ fls −→
(\f, tru) @ fls −→
tru

(b) (\x, poisonpill) @ omega

Answer: diverges

(c) pls @ c_one @ c_two

Answer: 2 steps
(\m, \n, \s, \z, m @ s @ (n @ s @ z)) @ c_one @ c_two −→
(\n, \s, \z, c_one @ s @ (n @ s @ z)) @ c_two −→
\s, \z, c_one @ s @ (c_two @ s @ z)

(d) (\y, (\x, x @ x) @ (\x, x @ x) @ y) @ (\z, z)

Answer: diverges

3. (3 points) Is the following statement true or false? If you write “false,” give a counter-example.

In the pure untyped lambda-calculus (i.e., the system we get by dropping constants from the
untyped lambda-calculus summarized on page 14), every term either is a value or can take
a step.

Answer: False. (This is true only for closed terms.)

Grading scheme: 0/3: answer of “true”
1/3: answered “false”
3/3: answered “false” with correct explanation or counter-example
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Programming in the Untyped Lambda-Calculus

Recall the definition of Church numerals and booleans in the untyped lambda-calculus (page 15).

4. (10 points) You may freely use the lambda-terms defined on page 15 in your answers to the following
questions.

(a) Write a lambda-term swap that reverses the elements of a pair. For example,

fst @ (swap @ (pair @ AA @ BB))

should evaluate to BB.
Answer: swap = \p, pair @ (snd @ p) @ (fst @ p)

(b) Write a lambda-term minus that subtracts Church numerals. For example minus @ c_three @ c_one
should be behaviorally equivalent to c_two, and minus @ c_one @ c_three should be behav-
iorally equivalent to c_zero.
Answer: minus = \m, \n, n @ prd @ m
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(c) Complete the following definition of a lambda-term lt that checks whether one Church numeral is
strictly less than another. For example, lt @ c_two @ c_three should be behaviorally equivalent
to tru, while lt @ c_two @ c_two and lt @ c_two @ c_one should be behaviorally equivalent
to fls.
Answer:

lt = Z @ (\l, \m, \n,
test @ (iszro @ m)
@ (\x, bnot @ (iszro @ n))
@ (\x, test @ (iszro @ n)

@ (\x, fls)
@ (\x, l @ (prd m) @ (prd n))

Grading scheme: 3 points for (a) and (b), 4 for (c)
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Behavioral Equivalence

Recall the definitions of observational and behavioral equivalence from the lecture notes:

• Two terms s and t are observationally equivalent iff either both are normalizable (i.e., they reach
a normal form after a finite number of evaluation steps) or both are divergent.

• Terms s and t are behaviorally equivalent iff, for every finite list of closed values [v_1, v_2, ..., v_n]
(including the empty list), the applications

s @ v_1 @ v_2 ... @ v_n

and
t @ v_1 @ v_2 ... @ v_n

are observationally equivalent.

5. (2 points) Write “yes” or “no” for each of the following:

(a) If two terms are behaviorally equivalent, then they are observationally equivalent.
Answer: Yes

(b) If two terms are observationally equivalent, then they are behaviorally equivalent.
Answer: No
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6. (8 points) Recall the hierarchy of program equivalences discussed in class:

(a) syntactic equivalence (i.e., literal identity)

(b) equivalence up to renaming of bound variables

(c) equivalence modulo evaluation

(d) behavioral equivalence

(e) observational equivalence

(f) universal equivalence (equating all terms)

For each of the following pairs of terms, decide which is the finest equivalence (i.e., the one appearing
earliest in the list) that relates the two terms, and write its letter. For example, if the two terms are
behaviorally equivalent but not equivalent modulo evaluation, you would write “d”.

(a) omega and poisonpill

Answer: f

(b) omega @ tru and poisonpill @ tru

Answer: d

(c) omega and poisonpill @ tru

Answer: c

(d) tru and pls

Answer: e

(e) fls and c_zero

Answer: b

(f) Z @ (\f, \n,
test
@ (iszro @ n)
@ (\z, c_one)
@ (\z, tms @ n @ (f @ (prd @ n)))).

and

Z @ (\f, \n,
test
@ (iszro @ n)
@ (\z, c_one)
@ (\z, f @ n)).

Answer: e
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Simply Typed Lambda-Calculus

The following questions are about the simply typed lambda calculus. For reference, the definition of
this language appears on page 16 at the end of the exam.

7. (10 points) Which of the following propositions are provable? Write “Yes” or “No” by each. For the
ones where you write “Yes,” give witnesses for the existentially bound variables. (E.g., for part 7a,
give a type T such that exists T, empty |- (\y:B-->B-->B, \x:B, y @ x) \in T is provable.)

(a) exists T, empty |- (\y:B-->B-->B, \x:B, y @ x) \in T
Answer: Yes
T = (B-->B-->B)-->B-->(B-->B)

(b) exists T, empty |- (\x \in A-->B, \y \in B-->C, \z \in A, y @ (x @ z)) \in T
Answer: Yes
T = (A-->B)-->(B-->C)-->A-->C

(c) exists S, exists U, exists T, [(x,S), (y,U)] |- (\z:A, x @ (y @ z)) \in T
Answer: Yes
S == B-->C

U == A-->B

T == A-->C

(d) exists S, exists T, [(x,S)] |- \y \in A, x @ (x @ y) \in T
Answer: Yes
S == A-->A

T == A-->A

(e) exists S, exists U, exists T, [(x,S)] |- x @ (\z \in U, z @ x) \in T
Answer: No

Grading scheme: Two points for each part. One point given for a correct “Yes” answer without correct
witnesses.
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Recall that the simply typed lambda-calculus enjoys the following properties:

Determinacy (of single-step evaluation): if eval t t′ and eval t t′′, then t′ = t′′.

Progress: If t is closed and empty |- t \in T, then either t is a value or else there is some t′

with eval t t′.

Preservation: If empty |- t \in T and eval t t′, then t′ has type T.

8. (3 points) Suppose we add the following rule to the typing relation:

| T_Strange : forall x t,
empty |- (\x \in A, t) \in B

Which of the three properties above become false in the presence of this rule? For each that becomes
false, give a counter-example.

Answer: Preservation breaks; a counter-example is (\y \in B, \z : B -> B, z @ y) @ (\y,y) Grad-
ing scheme: 1 point for some property being true, 2 points for saying that preservation breaks, 3 points
for figuring out the example.

9. (3 points) Suppose we remove the rule E_App1 from the evaluation relation. Which of the three
properties above become false in the absence of this rule? For each that becomes false, give a counter-
example.

Answer: Progress fails.

For example, (\x \in A-->A, \y \in A-->A, x) @ (\z \in A, z) @ (\z \in A, z) is well typed
but stuck Grading scheme: 1 point for getting some property right, 2 points for getting progress right,
3 for including counter-example.
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10. (4 points) Here is the preservation theorem for the simply typed lambda-calculus:

Theorem preservation : forall t t’ T,
empty |- t \in T

-> eval t t’
-> empty |- t’ \in T.

Does the theorem remain true if we swap t and t′ in the second premise (i.e., if we replace eval t t′

by eval t′ t)? Briefly explain.

Answer: No. For example, if t = tm_zero and t′ = (\x \in ty_bool, x) @ tm_zero, then we have
empty |- t \in ty_nat and eval t′ t, but not empty |- t′ \in ty_nat.

Grading scheme: 0/4: answer of “Yes”
1/4: answer of “No”
4/4: answer of “No” with explanation that t may not be well-typed.

11. (8 points) The following technical lemma plays a critical role in the proof of the preservation theorem:

Lemma substitution_preserves_typing : forall Gamma x U v t S,
Gamma ++ [(x,U)] |- t \in S

-> empty |- v \in U
-> not_bound_in _ x Gamma
-> Gamma |- {x|->v}t \in S.

(a) If we prove the preservation theorem by induction on evaluation derivations, there will be cases
for the three evaluation rules, E_AppAbs, E_App1 and E_App2. In which of these cases is the
substitution_preserves_typing lemma used? (Just give the name of the case.)
Answer: E_AppAbs

(b) If instead we prove the preservation theorem by induction on typing derivations, there will be
cases for the three typing rules, T_Var, T_Abs and T_App. In which of these cases is the lemma
substitution_preserves_typing used? (Just give the name of the case.)
Answer: T_App

(c) What is the role of the typing context Gamma in the statement of substitution_preserves_typing?
(Briefly explain.)
Answer: The case we are actually interested in (when we refer to this property from the proof
of preservation) is where Gamma is empty. But substitution_preserves_typing is proved by
induction, and we need to generalize its statement to get a strong enough induction hypothesis for
the T_Abs case to go through.

Grading scheme: 3pts each for (a) and (b). 2pts for (c), first point for realizing that Gamma generalizes
the theorem, second point for noting that this is used to strengthen the induction hypothesis.
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12. (14 points) Here is the progress theorem for the simply typed lambda-calculus:

Theorem progress : forall t T,
closed t

-> empty |- t \in T
-> value t \/ exists t’, eval t t’.

Briefly fill in the blanks in the following informal outline of a proof of this theorem. (There are five
blanks to fill in. Use English, not Coq! The correct answers are short.)

Proof. By induction on the derivation of empty |- t \in T.

• Case T_Var: Then t = x. Answer: This case cannot occur, since we are assuming that t is
closed.

• Case T_Abs: Then t = \x \in S, t1. Answer: Thus t is a value, and we are done.

• Case T_App: Then t = t1 @ t2. Since t is closed, so are t1 and t2. By the induction hypothesis,
we have

value t1 \/ exists t1’, eval t1 t1’

and

value t2 \/ exists t2’, eval t2 t2’.

Now:

– If t1 can take a step, then Answer: by E_App1 so can t1 @ t2, and we are done.
– If t1 is a value and t2 can take a step, then Answer: by E_App2 so can t1 @ t2, and again

we are done.
– If both are values, then Answer: t1 must have the form \x \in S, t11 for some S and t11.

But then, by E_AppAbs, t can evaluate to {x|->t2}t11, and we are done.

Grading scheme: 2 points for the first and second blanks
3 points for the third and fourth blanks
4 for the fifth blank
(basically binary)
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Challenge Problem

Warning: This problem is tricky and it is worth very few points. Do not attempt it until you have
finished all the other questions and are confident of your answers.

13. (2 points) Let us call a term t0 in the pure untyped lambda-calculus n-cyclic if there exist n terms
t1 ... tn such that

eval t t1

eval t1 t2

eval t2 t3

...
eval tn−1 tn,

where tn = t and ti 6= t for each 1 ≤ i < n. For example, omega is 1-cyclic.

Prove that there exists an n-cyclic term for every n ≥ 1.

Answer: Given n, construct the term

(\x, f @ x @ x) (\x, f @ x @ x),

where f is a lambda-term that, given an argument v, returns v after n− 1 steps of evaluation:

f = (\x, (\x,x) @ (\x,x) @ ... @ (\x,x)︸ ︷︷ ︸
n−1 times

@ x).
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For reference: Boolean and arithmetic expressions

Inductive tm : Set :=
| tm_true : tm
| tm_false : tm
| tm_if : tm -> tm -> tm -> tm
| tm_zero : tm
| tm_succ : tm -> tm
| tm_pred : tm -> tm
| tm_iszero : tm -> tm.

Inductive bvalue : tm -> Prop :=
| bv_true : bvalue tm_true
| bv_false : bvalue tm_false.

Inductive nvalue : tm -> Prop :=
| nv_zero : nvalue tm_zero
| nv_succ : forall t, nvalue t -> nvalue (tm_succ t).

Definition value (t:tm) := bvalue t \/ nvalue t.

Inductive eval : tm -> tm -> Prop :=
| E_IfTrue : forall t1 t2,

eval (tm_if tm_true t1 t2)
t1

| E_IfFalse : forall t1 t2,
eval (tm_if tm_false t1 t2)

t2
| E_If : forall t1 t1’ t2 t3,

eval t1 t1’
-> eval (tm_if t1 t2 t3)

(tm_if t1’ t2 t3)
| E_Succ : forall t1 t1’,

eval t1 t1’
-> eval (tm_succ t1)

(tm_succ t1’)
| E_PredZero :

eval (tm_pred tm_zero)
tm_zero

| E_PredSucc : forall t1,
nvalue t1

-> eval (tm_pred (tm_succ t1))
t1

| E_Pred : forall t1 t1’,
eval t1 t1’

-> eval (tm_pred t1)
(tm_pred t1’)

| E_IszeroZero :
eval (tm_iszero tm_zero)

tm_true
| E_IszeroSucc : forall t1,

12



nvalue t1
-> eval (tm_iszero (tm_succ t1))

tm_false
| E_Iszero : forall t1 t1’,

eval t1 t1’
-> eval (tm_iszero t1)

(tm_iszero t1’).

Inductive ty : Set :=
| ty_bool : ty
| ty_nat : ty.

Inductive has_type : tm -> ty -> Prop :=
| T_True :

has_type tm_true ty_bool
| T_False :

has_type tm_false ty_bool
| T_If : forall t1 t2 t3 T,

has_type t1 ty_bool
-> has_type t2 T
-> has_type t3 T
-> has_type (tm_if t1 t2 t3) T

| T_Zero :
has_type tm_zero ty_nat

| T_Succ : forall t1,
has_type t1 ty_nat

-> has_type (tm_succ t1) ty_nat
| T_Pred : forall t1,

has_type t1 ty_nat
-> has_type (tm_pred t1) ty_nat

| T_Iszero : forall t1,
has_type t1 ty_nat

-> has_type (tm_iszero t1) ty_bool.
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For reference: Untyped lambda-calculus

Definition name := nat.

Inductive tm : Set :=
| tm_const : name -> tm
| tm_var : name -> tm
| tm_app : tm -> tm -> tm
| tm_abs : name -> tm -> tm.

Notation "‘ n" := (tm_const n) (at level 19).
Notation "! n" := (tm_var n) (at level 19).
Notation "\ x , t" := (tm_abs x t) (at level 21).
Notation "r @ s" := (tm_app r s) (at level 20).

Fixpoint only_constants (t:tm) {struct t} : yesno :=
match t with
| tm_const _ => yes
| tm_app t1 t2 => both_yes (only_constants t1) (only_constants t2)
| _ => no
end.

Inductive value : tm -> Prop :=
| v_const : forall t,

only_constants t = yes -> value t
| v_abs : forall x t,

value (\x, t).

Fixpoint subst (x:name) (s:tm) (t:tm) {struct t} : tm :=
match t with
| ‘c => ‘c
| !y => if eqname x y then s else t
| \y, t1 => if eqname x y then t else (\y, subst x s t1)
| t1 @ t2 => (subst x s t1) @ (subst x s t2)
end.

Inductive eval : tm -> tm -> Prop :=
| E_AppAbs : forall x t12 v2,

value v2
-> eval ((\x, t12) @ v2) ({x |-> v2} t12)

| E_App1 : forall t1 t1’ t2,
eval t1 t1’

-> eval (t1 @ t2) (t1’ @ t2)
| E_App2 : forall v1 t2 t2’,

value v1
-> eval t2 t2’
-> eval (v1 @ t2) (v1 @ t2’).
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Notation tru := (\t, \f, t).
Notation fls := (\t, \f, f).

Notation bnot := (\b, b @ fls @ tru).
Notation and := (\b, \c, b @ c @ fls).
Notation or := (\b, \c, b @ tru @ c).
Notation test := (\b, \t, \f, b @ t @ f @ (\x,x)).

Notation pair := (\f, \s, (\b, b @ f @ s)).
Notation fst := (\p, p @ tru).
Notation snd := (\p, p @ fls).

Notation c_zero := (\s, \z, z).
Notation c_one := (\s, \z, s @ z).
Notation c_two := (\s, \z, s @ (s @ z)).
Notation c_three := (\s, \z, s @ (s @ (s @ z))).
Notation scc := (\n, \s, \z, s @ (n @ s @ z)).
Notation pls := (\m, \n, \s, \z, m @ s @ (n @ s @ z)).
Notation tms := (\m, \n, m @ (pls @ n) @ c_zero).
Notation iszro := (\m, m @ (\x, fls) @ tru).
Notation zz := (pair @ c_zero @ c_zero).
Notation ss := (\p, pair @ (snd @ p) @ (pls @ c_one @ (snd @ p))).
Notation prd := (\m, fst @ (m @ ss @ zz)).

Notation omega := ((\x, x @ x) @ (\x, x @ x)).
Notation poisonpill := (\y, omega).

Notation Z := (\f,
(\y, (\x, f @ (\y, x @ x @ y))

@ (\x, f @ (\y, x @ x @ y))
@ y)).

Notation f_fact := (\f,
\n,

test
@ (iszro @ n)
@ (\z, c_one)
@ (\z, tms @ n @ (f @ (prd @ n)))).

Notation fact := (Z @ f_fact).
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For reference: Simply typed lambda-calculus

Inductive ty : Set :=
| ty_base : nat -> ty
| ty_arrow : ty -> ty -> ty.

Notation A := (ty_base one).
Notation B := (ty_base two).
Notation C := (ty_base three).
Notation " S --> T " := (ty_arrow S T) (at level 20, right associativity).

Inductive tm : Set :=
| tm_var : nat -> tm
| tm_app : tm -> tm -> tm
| tm_abs : nat -> ty -> tm -> tm.

Notation " ! n " := (tm_var n) (at level 19).
Notation " \ x \in T , t " := (tm_abs x T t) (at level 21).
Notation " r @ s " := (tm_app r s) (at level 20).

Fixpoint subst (x:nat) (s:tm) (t:tm) {struct t} : tm :=
match t with
| !y => if eqnat x y then s else t
| \y \in T, t1 => if eqnat x y then t else (\y \in T, subst x s t1)
| t1 @ t2 => (subst x s t1) @ (subst x s t2)
end.

Notation "{ x |-> s } t" := (subst x s t) (at level 17).

Inductive value : tm -> Prop :=
| v_abs : forall x T t,

value (\x \in T, t).

Inductive eval : tm -> tm -> Prop :=
| E_AppAbs : forall x T t12 v2,

value v2
-> eval ((\x \in T, t12) @ v2) ({x |-> v2} t12)

| E_App1 : forall t1 t1’ t2,
eval t1 t1’

-> eval (t1 @ t2) (t1’ @ t2)
| E_App2 : forall v1 t2 t2’,

value v1
-> eval t2 t2’
-> eval (v1 @ t2) (v1 @ t2’).
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Notation context := (alist ty).

Definition empty : context := nil _.

Reserved Notation "Gamma |- t \in T" (at level 69).
Inductive typing : context -> tm -> ty -> Prop :=
| T_Var : forall Gamma x T,

binds _ x T Gamma ->
Gamma |- !x \in T

| T_Abs : forall Gamma x T1 T2 t,
(x,T1) :: Gamma |- t \in T2

-> Gamma |- (\x \in T1, t) \in T1-->T2
| T_App : forall S T Gamma t1 t2,

Gamma |- t1 \in S-->T
-> Gamma |- t2 \in S
-> Gamma |- t1@t2 \in T

where "Gamma |- t \in T" := (typing Gamma t T).
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