CIS 500 — Software Foundations
Midterm 11

Review questions with answers

November 11, 2007

Work each of the review problems yourself before looking at the answers given here. If your answer differs
from ours, make sure you understand why.



Typed arithmetic expressions

The full definition of the language of typed arithmetic and boolean expressions is reproduced, for your
reference, on page 19. Here are some important properties enjoyed by this definition:

Determinacy (of single-step evaluation): if eval t t’ and eval t t”, then t' = t”.

Normalization (of many-step evaluation): For every term t there is some normal form t’ such that
evalmany t t'.

Progress: If t has type T, then either t is a value or else there is some t’ with eval t t’.

Preservation: If t has type T and eval t t’/, then t’ has type T.

1. Suppose we add the following two new rules to the evaluation relation:

| E_PredTrue
eval (tm_pred tm_true)
(tm_pred tm_false)

| E_PredFalse
eval (tm_pred tm_false)
(tm_pred tm_true)

Which of the above properties will remain true in the presence of this rule? For each one, circle either
“remains true” or else “becomes false.” If a property becomes false, also write down a counter-example
to the property.

(a) Determinacy of evaluation

remains true becomes false, because ....

Answer: Remains true

(b) Normalization

remains true becomes false, because ....

Answer: Becomes false: pred true — pred false — pred true ...

(c) Progress

remains true becomes false, because ....

Answer: Remains true

(d) Preservation

remains true becomes false, because ....

Answer: Remains true



2. Suppose, instead, that we add this new rule to the typing relation:

| T_If : forall t2 t3,
has_type t2 ty_nat
-> has_type (tm_if tm_true t2 t3) ty_nat

Which of the properties on page 1 remains true? (Answer in the same style as the previous question.)

(a) Determinacy of evaluation

remains true becomes false, because ....
Answer: Remains true
(b) Normalization
remains true becomes false, because ....
Answer: Remains true
(c) Progress
remains true becomes false, because ....

Answer: Remains true

(d) Preservation

remains true becomes false, because ....

Answer: Remains true



3. Suppose, instead, that we add this new rule to the typing relation:

| T_SuccBool : forall t,
has_type t ty_bool
-> has_type (tm_succ t) ty_bool

Which of the properties on page 1 remains true? (Answer in the same style as the previous question.)

(a) Determinacy of evaluation

remains true becomes false, because ....
Answer: Remains true
(b) Normalization
remains true becomes false, because ....
Answer: Remains true
(c) Progress
remains true becomes false, because ....

Answer: Becomes false: (tm_succ tm_true) is well-typed, but stuck.

(d) Preservation

remains true becomes false, because ....

Answer: Remains true



4. Suppose we add a new rule

| E_Funnyl : forall t2 t3,
eval (tm_if tm_true t2 t3)
t3

to the ones given at the end of the exam. Do the properties on page 1 continue to hold in the presence
of this rule?

For each property that becomes false when the proposed rule is added to the system, state the name
of the property and give a brief counter-example demonstrating that it does not hold in the presence
of the new rule.

Answer:

Determinism: tm_<f tm_true tm_zero (tm_succ tm_zero) can now evaluate in one step
to either tm_zero or (tm_succ tm_zero).

5. Suppose instead that we add this rule:

| E_Funny2 : forall tl t2 t2’ t3,
eval t2 t2’
-> eval (tm_if t1 t2 t3)
(tm_if t1 t2’ t3)

Answer in the same format as problem 4: For each property that becomes false when the proposed
rule is added, write its name and give a brief counter-example. The properties are listed again at the
bottom of this page for easy reference.

Answer:
Determinism: tm_<f tm_false (tm_pred tm_zero) (tm_succ tm_zero) can now evalu-

ate in one step to either tm_succ tm_zero or tm_if tm_false tm_zero (tm_succ tm_zero).
(There are several other correct counter-examples for this question.)



6. Suppose instead that we add this rule to the original languge of typed arithmetic expressions:

| E_Funny3 :
eval (tm_pred tm_false)
(tm_pred (tm_pred tm_false))

Do the properties of the original system continue to hold in the presence of this rule?
Answer in the same format as the previous two problems.

Answer:
Normalization: tm_pred tm_false diverges.
7. Suppose instead that we add this rule to the original languge of typed arithmetic expressions:

| T_Funny4 :
has_type tm_zero ty_bool

Do the properties of the original system continue to hold in the presence of this rule?
Answer in the same format as the previous three problems.
Answer:

Progress: tm_if tm_zero tm_true tm_true has type ty_bool, is a normal form, and is
not a value.

8. Suppose instead that we add this rule to the original languge of typed arithmetic expressions:

| T_Funnyb :
has_type (tm_pred tm_zero) ty_bool

Do the properties of the original system continue to hold in the presence of this rule?
Answer in the same format as the previous problems.
Answer:

Preservation: tm_pred tm_zero has type ty_bool and evaluates in one step to tm_zero,
which does not have type ty_bool.



Untyped Lambda-Calculus

The following questions are about the untyped lambda calculus. For reference, the definition of this
language and names for a number of specific lambda-terms (c_zero, pls, etc., etc.) appear on page 21
at the end of the exam.

. Circle the term that each of the following lambda calculus terms steps to, using the single-step evalu-
ation relation eval t t’. If the term is a normal form, circle DOESN'T STEP.

(a) (\x,x) @ (\x, x @ x) @ (\x, x @ x)
i (\x, x @ (\x, x@x) e (\x, x@x)
ii. (\x, x @x) @ (\x, x @ x)
ii. (\x’, (\x, x @ x)) @ (\x, x @ x)
iv. (\x, x) @ (\x, x @ x)
v. DOESN’T STEP

Answer: (i)

(b) (\x, (\x,x) @ (\x, x @ x))
i. (\x, (\x,x) @ (\x, x @ x))
i, (\x, (\x, x @ x))
. (\x, (\x, x))
iv. (\x, x) @ (\x, x @ x)
v. DOESN’T STEP

Answer: (v)

() (\x, (\z, \x, x @z @x) @ (\x, x @ x)
i. (\x, (\z, \x, x@z) @x) @ (\x, x @ x)
i. (\z, \¥, (\x, x@x) @z @ (\x, x @ x)
ii. (\z, \x, x @ z) @ (\x, x @ x)
iv. (\x, x @ (\x, x @ x))
v. DOESN'T STEP

Answer: (iii)



10. For each of the following terms, either write down the term that it steps to in a single step of evaluation
or else write “DOESN’T STEP” if the term is a normal form.

(a) O\x, \y, x@ (\x, yex) ey @ (\z, z@y)
Answer: \y, (\z, z @y) @ (\e, y @x) @y

(b) \z, (\x, \y, x @ x) @ (\x, \y, x @ x)
Answer: Doesn’t step

11. Circle the normal forms of the following lambda calculus terms, if one exists. If there is no normal
form, circle NONE.

(a) \y, (\z, z@z) ey e (\x, x)
i. Ay, (\z, z @ 2z) @y) e (\x, x)
ii. (\z, z @ z) @ (\x,x)
ii. (\x, x)
iv. \y, y @ y) @ (\z,z)
v. NONE
Answer: i
(b) (\x, x @x @x) @ (\x, x @ x @x)
. \x, x@x@x) @ (\x, x@x @ x)
ii. (\x, x @ x @ x)
. (\x, x @x @x) @ (\x, x@x 0@x) @ (\x, x@x Q@ x)

iv. x @ x @ x
v. NONE
Answer: v
() \x, (\y, yay) e (\z, z @ z))
i O\x, Oy, yey) @ (\z, z @ 2))
ii. (\x, Ay, y @ y))
iii. (\y, (\z, z @ z))
iv. O\y, y@y) e (\z, z @ z)
v. NONE

Answer: i



12.

13.

14.

Programming in the Untyped Lambda-Calculus

Recall the definition of Church numerals and booleans in the untyped lambda-calculus (page 22).

Which of these lambda calculus terms implements xor (the exclusive or function, which returns tru
when exactly one of its arguments is tru.)

\x, \y, x @ (y @ f1s @ tru) @ (y @ tru @ fls)

(a
(b
(c
(d

)
)\, \y, x @y @y

)\x, \y, tru @ x @ y
) \x, \y, x @y @ fls

Answer: (a)

Which of these lambda-calculus terms implements odd, a function that returns tru if its argument (the
encoding of a natural number) is odd and fls otherwise,

(a) \m, m @ (\n, n @ fls @ tru) @ fls
(b) \m, m @ f1s @ (\n, tru @ fls)

(¢) \m, fl1s @ (\n, n @ m @ tru)

(d) \m, m @ (\n, tru) @ fls

Answer: (a)

The following is a slightly different encoding of natural numbers in the untyped lambda calculus.

s_0 = \s,\z, z

s.1 =\s,\z, s @s_00 z

s 2=\s,\z, s @s_10 (s @s_00 z)

s 3=\s,\z, s@s 20 (s@s_10 (s@s_00z))

scc = \n,\s,\z, s@n @ (n@s @ z)

(a) Define the predecessor function prd for this encoding, using the simplest term you can.
Answer: prd = \n, n @ (\m,\r, m) @ s_0
(b) Define the addition function pls for this encoding, using the simplest term you can.
Answer: pls = \n, \m, n @ (\z, scc) @ m
or the same definition for pls as for Church numerals:
pls = \n, \m, \s,\z, n @s @ (m@ s @ z)
(c¢) Define the function sumupto that, given the encoding of a number m, calculates the sum of all the
numbers less than or equal to m. Use the simplest term you can, and do not use Z.
Answer: sumupto = \m, m @ plus @ m is the simplest answer.



15. Complete the following definition of a lambda-term equal that implements a recursive equality function
on Church numerals. For example, equal @ c_zero @ c_zero and equal @ c_two @ c_two should
be behaviorally equivalent to tru, while equal @ c_zero @ c_one and equal @ c_three @ c_zero
should be behaviorally equivalent to £1s. You may freely use the lambda-terms defined on page 22.

equal =
Z @ (\e,
\m, \n,
test @ (iszro @ m)
ANSWER:

@ (\dummy, (iszro @ n))
@ (\dummy,
test @ (not @ (iszro @ n))
@ (\dummy, e @ (prd @ m) @ (prd @ n))
@ (\dummy, fls)))



Behavioral Equivalence

Recall the definitions of observational and behavioral equivalence from the lecture notes:

e Two terms s and t are observationally equivalent iff either both are normalizable (i.e., they reach
a normal form after a finite number of evaluation steps) or both are divergent.

e Terms s and t are behaviorally equivalent iff, for every finite list of closed values [v_1, v_2, ..., v_n]
(including the empty list), the applications

s@v_10@v_2 ... @Qv_n

and
tQ@v_1@v_2 ... Q@v_n

are observationally equivalent.

16. For each of the following pairs of terms, write Yes if the terms are behaviorally equivalent and No if
they are not.

(a) plus @ c_2 @ c_1
c_3
Answer: Yes
®) \x, \y, x ey
\x, x
Answer: Yes
(¢) tru
\X’ \y, (\Z, Z) Q x
Answer: Yes
(d) \X’ \y, x @ y
\x, \y, (\z, z) ex @y
Answer: Yes
(e) \Xs \y, x @ y
\x, \y, x@ (\z, z) @y
Answer: No
f) O\x, x@ex) e (\x, x @x)
(\x, x@x @x) @ (\x, x@x @ x)
Answer: Yes

(g (\x, x@x) @ (\x, x @ x)
\x, (\x, x @x) @ (\x, x @ x)
Answer: No
(h) \x, \y, x @y
\x, x
Answer: Yes
(i) \f, (\x, @ (x@ex)) e (\x, f@ (x@x))

Af, Ay, (\x, £ e (\y, xexaey) e (\x, fe (\y, x@x@Qy)) ey)
Answer: No

10



17.

18.

19.

In the following problems, feel free to use the lambda-terms (c_zero, omega, etc., etc.) defined on
page 22.

The terms tru and £1s are not behaviorally equivalent. Show this by writing down a list [v_1, v_2,
of closed values such that
s@v_.1Q@v_2 ... Q@v.,n

and
t@v_1@v_2 ... Q@v_n

are not observationally equivalent. (Give the shortest possible such list.)

Answer: [ tru, poisonpill, tru ]

The terms omega and poisonpill are not behaviorally equivalent. Show this by writing down a list
[v_1, v_2, ..., v_n] of closed values such that

s@v_1Q@v_2 ... @Qv_,n

and
t@v_1@v_2 ... Q@v_,n

are not observationally equivalent. (Give the shortest possible such list.)
Answer: [ ] (the empty list)

The terms c_two and c_three are not behaviorally equivalent. Show this by writing down a list
[v_1, v_2, ..., v_n] of closed values such that

s@v_1Q@v_2 ... @Qv_n

and
tQ@v_1Q@v_2 ... 0Qv_n

are not observationally equivalent. (Give the shortest possible such list.)

Answer: [ (\z,\z, \z,omega), tru ]

11

., v_n]



Alternative Notions of Evaluation

20. One attractive feature of behavioral equivalence is that the definitions can be applied verbatim to other
notions of evaluation besides standard call-by-value evaluation. In this problem, we’ll apply them to
call-by-name (CBN) evaluation.

Recall the definition of single-step CBN evaluation from Lecture 15:

Inductive eval_cbn : tm -> tm -> Prop :=
| En_AppAbs : forall x t12 v2,
eval_cbn ((\x, t12) @ v2) ({x |-> v2} t12)
| En_Appl : forall t1 t1’ t2,
eval_cbn t1 t1’
-> eval_cbn (t1 @ t2) (t1’ @ t2).

e Two terms s and t are observationally equivalent under CBN iff either both are normalizable (i.e.,
they reach a normal form after a finite number of CBN evaluation steps) or both are divergent.

e Terms s and t are behaviorally equivalent under CBN iff, for every finite list of closed values
[v_1, v_2, ..., v_n] (including the empty list), the applications

s@v_10@v_2 ... @Qv_,n

and
tQ@v_1@v_2 ... Q@v_n

are observationally equivalent under CBN.

For each of the following pairs of terms, write Yes if the terms are behaviorally equivalent under CBN
and No if they are not.

(a) omega
tru
Answer: No
(b) omega
poisonpill
Answer: No
(¢) tru @ c_zero @ omega

tru @ c_zero Q@ fls
Answer: Yes

(d) tru @ omega @ c_zero
tru @ fls @ c_zero
Answer: Yes

(&) \x, \y, x @y
\x, X
Answer: Yes

(f) tru
\X, \Y, (\Z, Z) Q x
Answer: Yes

(8) tru
\x, \y, (\z, z) @ x
Answer: Yes

(h) (\x, x@x) @ (\x, x @ x)
\x, (\x, x @ x) @ (\x, x @ x)
Answer: No

12



Simply Typed Lambda-Calculus

The following questions are about the untyped lambda calculus. For reference, the definition of this
language appears on page 23 at the end of the exam.

21. Which of the following propositions are provable? (Write “Yes” or “No” by each.)

(a) [(y,B)] |- (\x \in A, x) \in A-->A
Answer: Yes

(b) exists T, empty |- (\y:B-->B, \x:B, y @ x) \in T
Answer: Yes

(c) exists T, empty |- (\y:B-->B, \x:B, x @ y) \in T
Answer: No

(d) exists S, exists T, [(x,8)] |- x @ (\y:B-->B, y) \in T
Answer: Yes

(e) exists S, [(x,9)]1 |- (\y:B-->B, y) @ x \in S
Answer: Yes

(f) exists S, exists T, [(x,8)] |-x @x @x \in T
Answer: No

13



22. State the progress and preservation theorems for the simply typed lambda-calculus (without looking
at the lecture notes).

Answer:

Theorem preservation : forall t t’ T,
empty |- t \in T
-> eval t t’
-> empty |- t’ \in T.

Theorem progress : forall t T,
closed t
-> empty |- t \in T
-> value t
\/ exists t’, eval t t’.

(* Or, equivalently: *)
Theorem progress : forall t T,
empty |- t \in T
-> value t
\/ exists t’, eval t t’.

14



23. The following technical lemma appears in the notes for Lecture 17:

Lemma weakening_empty_preserves_typing : forall Gamma t T,
empty |- t \in T
-> Gamma |- t \in T.

Briefly explain where this property is used and why it is needed.

Answer: It is used in the proof that substitution preserves typing. When we encounter an occurrence of
the variable being substituted for, we need to replace it with the term v being substituted in and use the
proof that v is well typed (with the same type as we are assuming for the variable). But this proof is
given in the empty context, whereas we are using it in a setting where we’ve gone under some binders
and the context may be non-empty. The weakening_empty_preserves_typing lemma is used to show
that the typing proof for v can be “weakened” to apply in this non-empty context.

Note: It is very likely that there will be at least one question on the exam where you will be expected to
remember how the most important properties of the untyped and/or simply typed lambda-calculus are
proved (progress, preservation, determinism, weakening, substitution, etc.).

Howewver, the phrasing of this question is more challenging than would probably be used on an exam, in
the sense that it gives you almost no guidance as to what sort of response is desired (how much detail
to give, what you can assume the reader remembers, how formal to be, etc.). An exam question would
be somewhat more structured.

15



Coq Tactics

24. Briefly explain what the following tactics do:

(a) subst

Answer: The subst] tactic eliminates (from the context) all equalities where one side is just a
variable by rewriting all occurrences of this variable in the goal and all the other hypotheses. This
s a good way to clean up a mess left by inversion.

(b) try solve [t1 | t2 | ...]

Answer: try solve [t1 [ t2 [ ...J will try to solve the goal by using first tactic t1, then t2,
etc. If none of them succeeds in completely solving the goal, then try solve [t1 [ t2 [ ...]
does nothing.

(c) t1 ; t2
Answer: Applies t1 to the current goal and then applies t2 to every subgoal generated by t1.
(d) assumption
Answer: If the context contains an assumption H that will solve the goal and generate no subgoals,
then doing assumption is just the same as doing apply H (except that H does not need to be named
explicitly).
(e) remember

Answer: remember e as z replaces all occurrences of the expression e (in the current goal and
in the current context) with the variable = and introduces an assumption ¢ = e.

16



For reference: Boolean and arithmetic expressions

Inductive tm : Set :=
| tm_true : tm
| tm_false : tm
| tm_if : tm -> tm -> tm -> tm
| tm_zero : tm
| tm_succ : tm -> tm
| tm_pred : tm -> tm
| tm_iszero : tm -> tm.

Inductive bvalue : tm -> Prop
| bv_true : bvalue tm_true
| bv_false : bvalue tm_false.

Inductive nvalue : tm -> Prop
| nv_zero : nvalue tm_zero
| nv_succ : forall t, nvalue t -> nvalue (tm_succ t).

Definition value (t:tm) := bvalue t \/ nvalue t.

Inductive eval : tm -> tm -> Prop :=
| E_IfTrue : forall t1 t2,
eval (tm_if tm_true t1 t2)
t1
| E_IfFalse : forall t1 t2,
eval (tm_if tm_false t1 t2)
t2
| E_If : forall t1 t1’ t2 t3,
eval t1 t1’
-> eval (tm_if t1 t2 t3)
(tm_if t1’ t2 t3)
| E_Succ : forall t1 t1’,
eval t1 t1’
-> eval (tm_succ t1)
(tm_succ t1°)

| E_PredZero
eval (tm_pred tm_zero)
tm_zero

| E_PredSucc : forall ti1,
nvalue t1
-> eval (tm_pred (tm_succ t1))

t1
| E_Pred : forall t1 t1’,
eval t1 t1’

-> eval (tm_pred t1)
(tm_pred t1°)
| E_IszeroZero
eval (tm_iszero tm_zero)
tm_true
| E_IszeroSucc : forall ti,

17



nvalue t1
-> eval (tm_iszero (tm_succ t1))
tm_false
| E_Iszero : forall t1 t1’,
eval t1 t1’
-> eval (tm_iszero t1)
(tm_iszero t17).

Inductive ty : Set :=
| ty_bool : ty
| ty_nat : ty.

Inductive has_type : tm -> ty -> Prop :=
| T_True
has_type tm_true ty_bool
| T_False
has_type tm_false ty_bool
| T_.If : forall tl1 t2 t3 T,
has_type tl1l ty_bool
-> has_type t2 T
-> has_type t3 T
-> has_type (tm_if t1 t2 t3) T
| T_Zero :
has_type tm_zero ty_nat
| T_Succ : forall ti1,
has_type tl ty_nat
-> has_type (tm_succ tl) ty_nat
| T_Pred : forall ti,
has_type tl ty_nat
-> has_type (tm_pred t1) ty_nat
| T_Iszero : forall ti1,
has_type tl1 ty_nat

-> has_type (tm_iszero tl1) ty_bool.

18



For reference: Untyped Lambda-Calculus

Definition name := nat.

Inductive tm : Set :=
| tm_const : name -> tm
| tm_var : name -> tm
| tm_app : tm -> tm -> tm
| tm_abs : name -> tm -> tm.

Notation "¢ n" := (tm_const n) (at level 19).
Notation "! n" := (tm_var n) (at level 19).
Notation "\ x , t" := (tm_abs x t) (at level 21).
Notation "r @ s" := (tm_app r s) (at level 20).

Fixpoint only_constants (t:tm) {struct t} : yesno :=
match t with

| tm_const _ => yes

| tm_app t1 t2 => both_yes (only_constants t1) (only_constants t2)
| _ => no

end.

Inductive value : tm -> Prop :=
| v_const : forall t,
only_constants t = yes -> value t
| v_abs : forall x t,
value (\x, t).

Fixpoint subst (x:name) (s:tm) (t:tm) {struct t} : tm :=
match t with
| ‘c => ‘c
| 'y => if eqname x y then s else t
| \y, t1 => if eqname x y then t else (\y, subst x s t1)
| t1 @ t2 => (subst x s t1) @ (subst x s t2)
end.

Inductive eval : tm -> tm -> Prop :=
| E_AppAbs : forall x t12 v2,
value v2
-> eval ((\x, t12) @ v2) ({x |-> v2} t12)
| E_Appl : forall t1 t1’ t2,
eval t1 t1’
-> eval (t1 @ t2) (t1’ @ t2)
| E_App2 : forall vl t2 t2’,
value vi
-> eval t2 t2’
-> eval (vl @ t2) (vl @ t2’).

19



A\t, \f, ).
At, \f, £).

Notation tru :
Notation fls :

Notation bnot := (\b, b @ fls @ tru).
Notation and := (\b, \c, b @ ¢ @ fls).
Notation or := (\b, \c, b @ tru @ c).
Notation test := (\b, \t, \f, b@t e f e (\x,x)).

(\f, \s, (\b, bef @ s)).

Notation pair :

Notation fst := (\p, p @ tru).
Notation snd := (\p, p @ fls).
Notation c_zero := (\s, \z, z).

Notation c_one := (\s, \z, s @ z).

Notation c_two (\s, \z, s @ (s @ 2)).

Notation c_three := (\s, \z, s @ (s @ (s @ z))).

Notation scc := (\n, \s, \z, s @ (n @ s @ z)).

Notation pls := (\m, \n, \s, \z, m @ s @ (n @ s @ 2)).

Notation tms := (\m, \n, m @ (pls @ n) @ c_zero).

Notation iszro := (\m, m @ (\x, fls) @ tru).

Notation zz := (pair @ c_zero @ c_zero).

Notation ss := (\p, pair @ (snd @ p) @ (pls @ c_one @ (snd @ p))).
Notation prd := (\m, fst @ (m @ ss @ zz)).

Notation omega := ((\x, x @ x) @ (\x, x @ x)).
Notation poisonpill := (\y, omega).

Notation Z := (\f,
Ay, Qx, £ @ (\y, x@xQy))
@ (\x, £f@ (\y, x @x Qy))
Qe y)).
Notation f_fact := (\f,
\n,
test
@ (iszro @ n)
@ (\z, c_one)
@ (\z, tms @n @ (f @ (prd @ n)))).

Notation fact := (Z @ f_fact).

20



For reference: Untyped Lambda-Calculus

Inductive ty : Set :=
| ty_base : nat -> ty
| ty_arrow : ty -> ty —-> ty.

Notation A := (ty_base omne).

Notation B := (ty_base two).

Notation C := (ty_base three).

Notation " S --> T " := (ty_arrow S T) (at level 20, right associativity).

Inductive tm : Set :=
| tm_var : nat -> tm
| tm_app : tm -> tm -> tm
| tm_abs : nat -> ty -> tm -> tm.

Notation " ! n " := (tm_var n) (at level 19).
Notation " \ x \in T , t " := (tm_abs x T t) (at level 21).
Notation " r @ s " := (tm_app r s) (at level 20).

Fixpoint subst (x:nat) (s:tm) (t:tm) {struct t} : tm :=
match t with
| 'y => if eqnat x y then s else t
| \y \in T, t1 => if eqnat x y then t else (\y \in T, subst x s t1)
| t1 @ t2 => (subst x s t1) @ (subst x s t2)
end.

Notation "{ x |-> s } t" := (subst x s t) (at level 17).

Inductive value : tm -> Prop :=
| v_abs : forall x T t,
value (\x \in T, t).

Inductive eval : tm -> tm -> Prop :=
| E_AppAbs : forall x T t12 v2,
value v2
-> eval ((\x \in T, t12) @ v2) ({x |-> v2} t12)
| E_Appl : forall t1 t1’ t2,
eval tl1 t1’
-> eval (t1 @ t2) (t1’ @ t2)
| E_App2 : forall vl t2 t2’,
value vl
-> eval t2 t2’
-> eval (vl @ t2) (vl @ t2’).

Notation context := (alist ty).
Definition empty : context := nil _.

Reserved Notation "Gamma |- t \in T" (at level 69).
Inductive typing : context -> tm -> ty -> Prop :=
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| T_Var : forall Gamma x T,
binds _ x T Gamma ->
Gamma |- !'x \in T
| T_Abs : forall Gamma x T1 T2 t,
(x,T1) :: Gamma |- t \in T2
-> Gamma |- (\x \in T1, t) \in T1-->T2
| T_App : forall S T Gamma t1 t2,
Gamma |- t1 \in S-->T
-> Gamma |- t2 \in S
-> Gamma |- t1@t2 \in T
where "Gamma |- t \in T" := (typing Gamma t T).
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