Lecture 1

CIS 500: SOFTWARE FOUNDATIONS

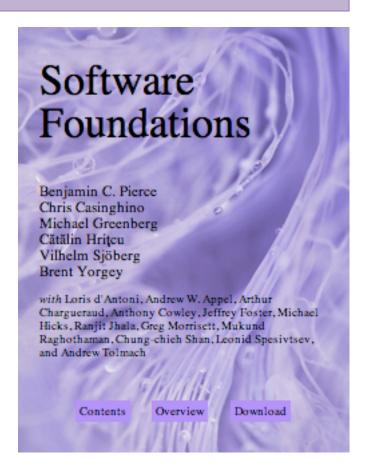
Steve Zdancewic

Fall, 2013

Administrivia

Instructor: Steve Zdancewic

Office hours: Wednesday 3:30-5:00 & by appointment


Levine 511

- TAs:
 - Dmitri Garbuzov
 Office hours: TBA
 - Jennifer PaykinOffice hours: TBA

- E-mail: cis500@seas.upenn.edu
- Web site: http://www.seas.upenn.edu/~cis500
- Canvas: https://upenn.instructure.com
- Piazza: http://piazza.com/upenn/fall2013/cis500

Resources

- Course textbook: *Software Foundations*
 - Electronic edition tailor-made for this class
 - Use the version available from the cis500 course web pages.
- Additional books:
 - Types and Programming Languages (Pierce, 2002 MIT Press)
 - Interactive Theorem Proving and Program
 Development
 (Bertot and Castéran, 2004 Springer)
 - Certified Programming with Dependent Types (Chlipala, electronic edition)

"Regular" vs. "Advanced" Tracks

- "Advanced" track:
 - More and harder exercises
 - More challenging exams.
 - It is a superset of the "regular" material.
- All students start in the advanced track by default.
- Students who wish to take CIS 500 for WPE I credit (Ph.D.) *must* take the advanced track.
- Students may switch from advanced to regular track at any time.
 - Notify the course staff.
 - The change is *permanent* after the first midterm.
- Students wishing to switch (back) to the advanced track:
 - Must do so *before* the first midterm exam.
 - Must make up all the advanced exercises (or accept the grade penalty).
- Only students taking the advanced track are eligible for an A+.

Course Policies

- Prerequisites:
 - Undergraduate programming languages or compiler class
 - Significant programming experience
 - Mathematical sophistication

Grading:

24% Homework ~12 weekly assignments

• 18% Midterm I (tentatively) Oct. 1st

• 18% Midterm 2 (tentatively) Nov. 7th

• 36% Final TBA

- 4% Class participation
- ⇒ Lecture attendance is crucial!

"Regular" and "Advanced" track students will be graded separately.

Participation Policy

- Class attendance is mandatory.
- We will be using "clickers" for
 - in-class mini quizzes
 - in-class polls about course material
- Clicker use will be your attendance record.
- For next time: buy a clicker at the bookstore.

Homework Policies

- Homework is to be done individually.
- Homework must be submitted via Canvas
- Homework that is late is subject to:
 - 25% penalty for 1 day late
 - 50% penalty for 2 days late
 - 75% penalty for 3 days late
- Homework is due at 8:00pm on the due date (generally Thurs.).
- Advanced track students must complete (or try to complete) all nonoptional exercises.
 - Missing "advanced" exercises will count against your score.
- Regular track students must complete (or try to complete) all nonoptional exercises except those marked "advanced".
 - Missing "advanced" exercises will not count against your score.
 - (But may help in your understanding of the material)

SOFTWARE FOUNDATIONS

Images in the following slides taken from Wikipedia.

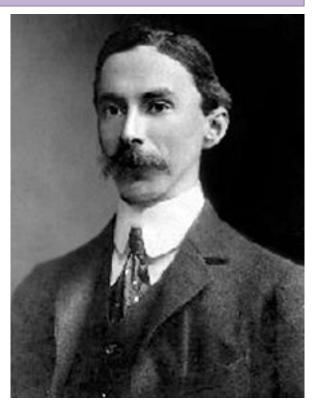
The Story Begins...

- Gottlob Frege: a German mathematician who started in geometry but became interested in logic and foundations of arithmetic.
- 1879 Published "Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens" (Concept-Script: A Formal Language for Pure Thought Modeled on that of Arithmetic)
 - First rigorous treatment of functions and quantified variables
 - $\vdash A, \neg A, \forall x.F(x)$
 - First notation able to express arbitrarily complicated logical statements

Gottlob Frege 1848-1925

Formalization of Arithmetic

- 1884: *Die Grundlagen der Arithmetik* (The Foundations of Arithmetic)
- 1893: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 1)
- 1903: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 2)
- Frege's Goals:
 - isolate logical principles of inference
 - derive laws of arithmetic from first principles
 - set mathematics on a solid foundation of logic


The plot thickens...

Just as Volume 2 was going to print in 1903, Frege received a letter...

Bertrand Russell

• Russell's paradox:

- 1. Set comprehension notation: $\{x \mid P(x)\}$ "The set of x such that P(x)"
- 2. Let X be the set $\{Y \mid Y \notin X\}$.
- 3. Ask the logical question: Does $X \in X$ hold?
- 4. Paradox! If $X \in X$ then $X \notin X$. If $X \notin X$ then $X \in X$.
- Russell's paradox destroyed Frege's logical foundations...

Bertrand Russell 1872 - 1970

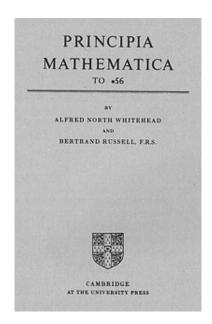
Addendum to Frege's 1903 Book

"Hardly anything more unfortunate can befall a scientific writer than to have one of the foundations of his edifice shaken after the work is finished. This was the position I was placed in by a letter of Mr. Bertrand Russell, just when the printing of this volume was nearing its completion." — Frege, 1903

Aftermath of Frege and Russell

- Frege came up with a fix, but it made his logic trivial...
- 1908: Russell fixed the inconsistency of Frege's logic by developing a *theory of types*.
- 1910, 1912, 1913, (revised 1927): *Principia Mathematica* (Whitehead & Russell)
 - Goal: axioms and rules from which all mathematical truths could be derived.
 - It was a bit unwieldy...

"From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2."


—Volume I, 1st edition, page 379

Whitehead

Russell

Logic in the 1930s and 1940s

- 1931: Kurt Gödel's first and second incompleteness theorems.
 - Demonstrated that any consistent formal theory capable of expressing arithmetic cannot be complete.

Kurt Gödel 1906 - 1978

- 1936: Genzen proves consistency of arithmetic.
- 1936: Church introduces the λ -calculus.
- 1936: Turing introduces Turing machines
 - Is there a decision procedure for arithmetic?
 - Answer: no it's undecidable
 - The famous "halting problem"
 - only in 1938 did Turing get his Ph.D.
- 1940: Church introduces the *simple theory of types*

Gerhard Gentzen 1909 - 1945

Alonzo Church 1903 - 1995

Alan Turing 1912 - 1954

Fast Forward...

• 1958 (Haskell Curry) and 1969 (William Howard) observe a remarkable correspondence:

types	~	propositions
programs	~	proofs
computation	~	simplification

- uses the Curry-Howard correspondence for computer-verified mathematics
- 1971: Jean-Yves Girard introduces System F <
- 1972: Girard introduces Fω
- 1972: Per Marin-Löf introduces intuitionistic type theory
- 1974: John Reynolds independently discovers System F

N.G. de Bruijn 1918 - 2012

Basis for modern type systems: OCaml, Haskell, Scala, Java, C#, ...

... to the Present

- 1984: Coquand and Huet first begin implementing a new theorem prover "Coq"
- 1985: Coquand introduces the calculus of constructions
 - combines features from intuitionistic type theory and $F\boldsymbol{\omega}$
- 1989: Coquand and Paulin extend CoC to the calculus of inductive constructions
 - adds "inductive types" as a primitive
- 1992: Coq ported to Xavier Leroy's Caml
- 1990's: up to Coq version 6.2
- 2000-2010: Coq version 8.3
- 2011: Coq version 8.4 ← CIS 500

Gérard Huet 1947 –

Too many contributors to mention here...

So much for foundations... what about software?

SOFTWARE FOUNDATIONS

Building Reliable Software

- Suppose you work at (or run) a software company.
- Suppose, like Frege, you've sunk 30+ person-years into developing the "next big thing":
 - Boeing Dreamliner2 flight controller
 - Autonomous vehicle control software for Nissan
 - Gene therapy DNA tailoring algorithms
 - Super-efficient green-energy power grid controller
- Suppose, like Frege, your company has invested a lot of material resources that are also at stake.
- How do you avoid getting a letter like the one from Russell?

Or, worse yet, *not* getting the letter to disastrous consequences?

Approaches to Reliability

- Social
 - Code reviews
 - Extreme/Pair programming
- Methodological
 - Design patterns
 - Test-driven development
 - Version control
 - Bug tracking
- Technological
 - "lint" tools
 - Fuzzers
- Mathematical
 - Sound type systems
 - "Formal" verification

Less "formal": Techniques may miss problems in programs

This isn't a tradeoff... all of these methods should be used.

Even the most "formal" can still have holes:

- did you prove the right thing?
- · do your assumptions match reality?

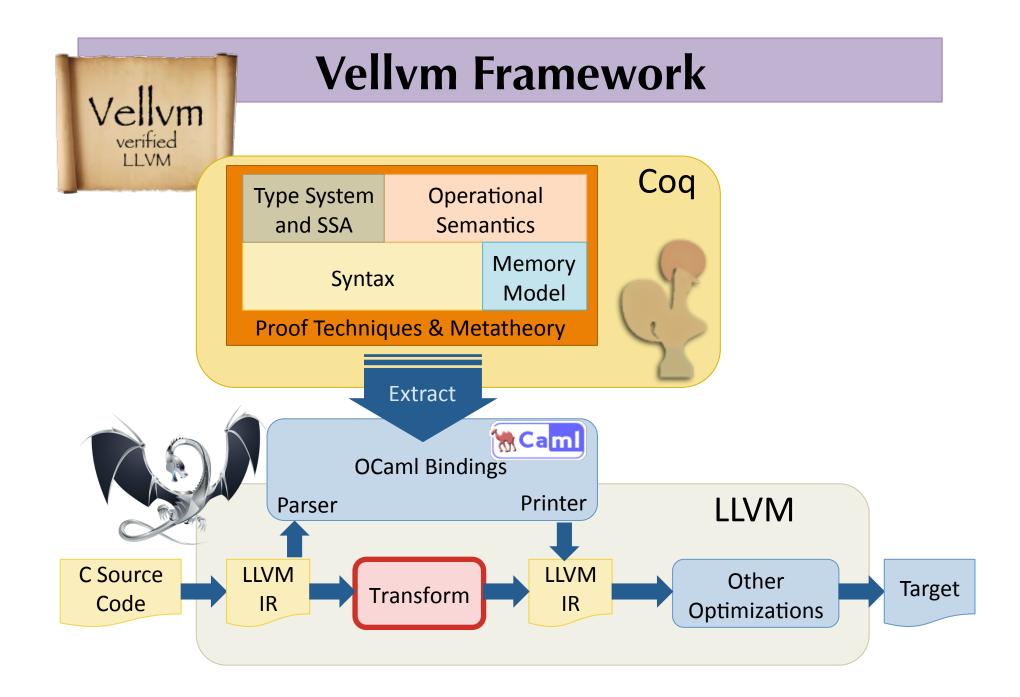
More "formal": eliminate with certainty as many problems as possible.

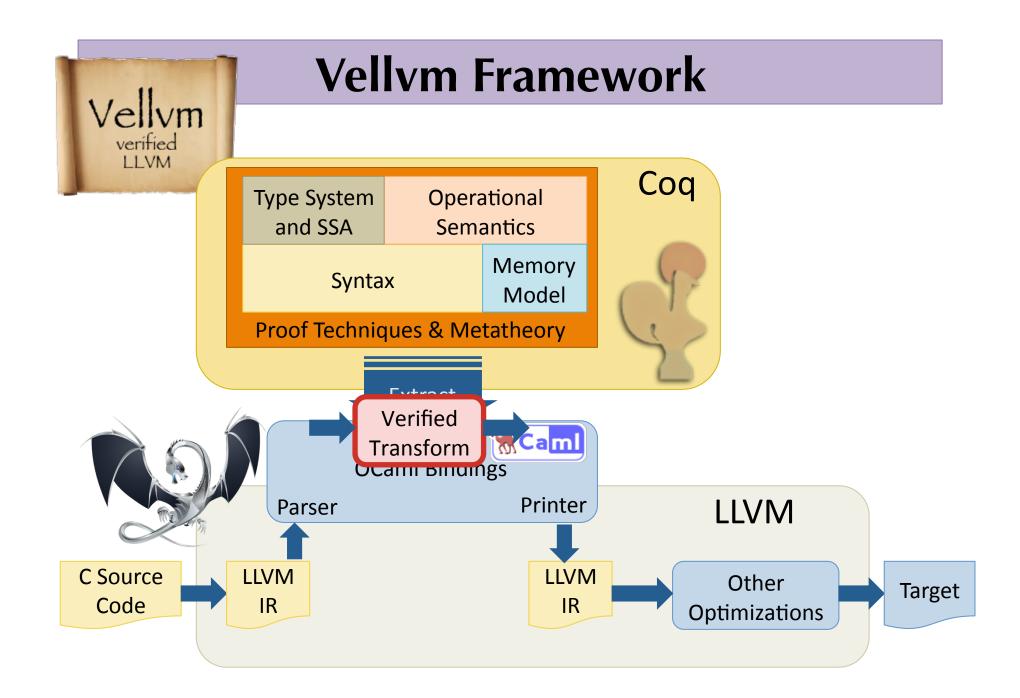
Five Interwoven Threads

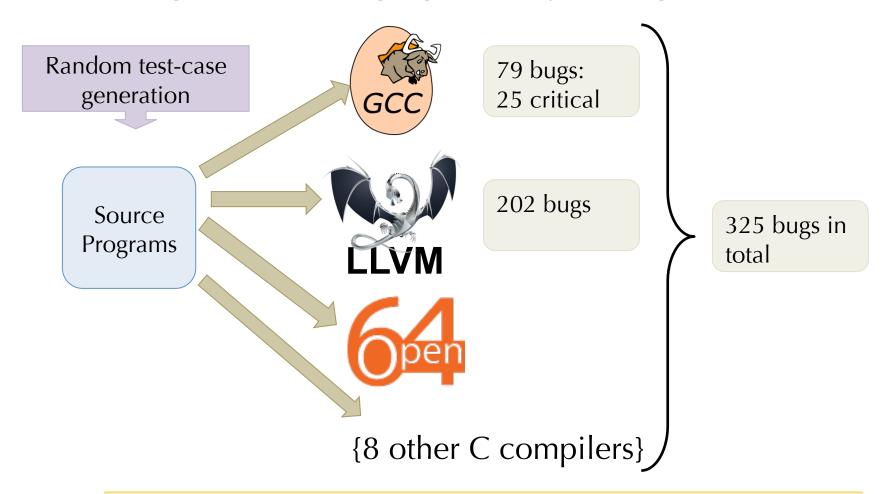
- basic tools from logic for making and justifying precise claims about programs
- the use of proof assistants to construct rigorous, machine checkable, logical arguments
- 3. the idea of functional programming, both as a method of programming and as a bridge between programming and logic
- 4. techniques for formal verification of properties of specific programs
- 5. the use of type systems for establishing well-behavedness guarantees for all programs in a given language

Can it Scale?

- Use of theorem proving to verify "real" software is still considered to be the bleeding edge of PL research.
- CompCert fully verified C compiler Leroy, INRIA
- Ynot verified DBMS, web services Morrisett, Harvard
- Verified Software Toolchain Appel, Princeton
- Bedrock Chlipala, MIT
- CertiKOS certified OS kernel Shao & Ford, Yale
- Vellvm formalized LLVM IR Zdancewic, Penn






Zdancewic

Does it work?

Finding and Understanding Bugs in C Compilers [Yang et al. PLDI 2011]

Verified Compiler: CompCert [Leroy et al.]

<10 bugs found in *unverified* front-end component

Regehr's Group Concludes

The striking thing about our CompCert results is that the *middle-end bugs* we found in all other compilers are *absent*. As of early 2011, the under-development version of CompCert is the only compiler we have tested for which Csmith cannot find wrong-code errors. This is not for lack of trying: we have devoted about six CPU-years to the task. The apparent unbreakability of CompCert supports a strong argument that developing compiler optimizations within a proof framework, where safety checks are explicit and machine-checked, has tangible benefits for compiler users.

(emphasis mine)

Why CIS 500?

Foundations

- Functional programming
- Constructive logic
- Logical foundations
- Proof techniques for inductive definitions

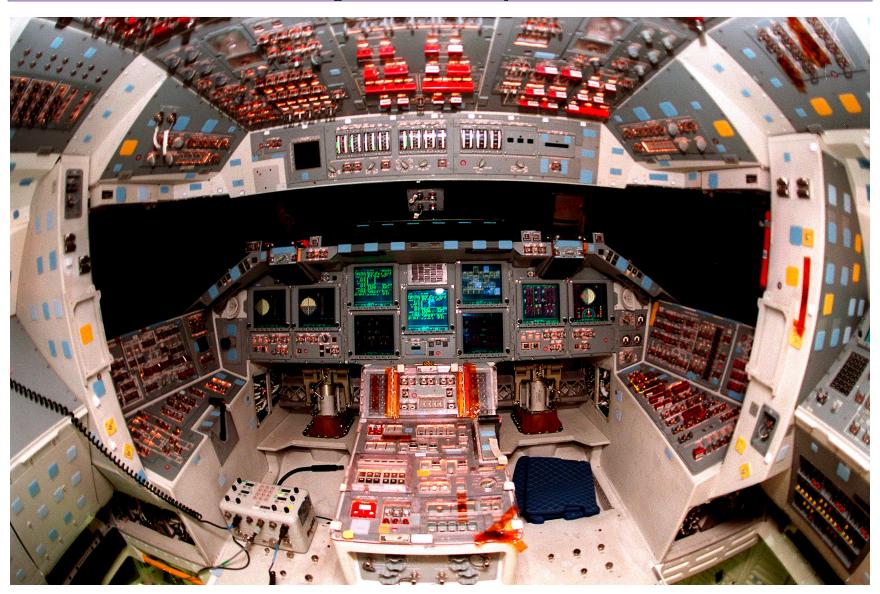
Semantics

- Operational semantics
- Modeling imperative "While" programs
- Hoare logic for reasoning about program correctness

Type Systems

- Simply typed λ -calculus
- Type safety
- Subtyping
- Dependently-typed programming
- Coq interactive theorem prover
 - turns doing proofs & logic into programming ———— fun!

Coq in CIS 500


- We'll use Coq version 8.4
 - Available on CETS systems
 - Easy to install on your own machine

- Two different user interfaces
 - CoqIDE a standalone GUI / editor
 - ProofGeneral an Emacs-based editing environment
- Course web pages have more information.

Coq's Full System

Subset Used in CIS 500

Getting acquainted with Coq.

BASICS.V

CIS 500: TODO

- Soon:
 - Register for Piazza
 - Try to log in to Canvas
 - Reading: Preface and Basics
- Before next time:
 - Install Coq v. 8.4
 - Buy a clicker from the bookstore
- HW1: Basics.v
 - Due: Thursday, Sept. 5th at 8:00pm
 - This is Rosh Hashanah if that's a problem, come talk to me.
 - Available on the web pages
 - Complete all non-optional exercises
 - There are no "advanced" for this HW
 - Submit to Canvas