
CIS 500 — Software Foundations

Final

(Advanced version)

April 30, 2013
Answer key

1. (12 points) Recall the definition of the fold function on lists (given in the appendix, page ??).
Use it to define a function sum_list_list that, given a list (list nat), returns the sum of all
the nats in it. E.g.

sum_list_list [[1,3],[5,6]] = 15

(Note that the first line we’ve given you starts with Definition, not Fixpoint: your solution
should be non-recursive.)

Definition sum_list_list (l : list (list nat)) : nat :=

Answer:

fold (fun z => fun h => fold plus h z) 0 l.

Grading scheme: 6 points off if not recursive or missing fold, 3 points off if not accumulating, 1,2
or 3 points off for other errors or redundancies.

2. (12 points) Complete the definition at the bottom of the page of an inductive proposition count

that counts the number of elements of a list satisfying some predicate P. For example, if we define

Definition iszero (n : nat) : Prop :=

n = 0.

then the propositions

count iszero [] 0

count iszero [1,2,3] 0

count iszero [0,1,2,3] 1

count iszero [1,0,0,2,3,0] 3

should all be provable, whereas the propositions

count iszero [1,2,3] 3

count iszero [0,0] 4

count iszero [] 1

should not be provable.

Inductive count {X : Type} (P : X -> Prop) : list X -> nat -> Prop :=

Answer:

R0 : count P nil 0

| Rno : forall l n x, count P l n -> ~(P x) -> count P (x::l) n

| Ryes : forall l n x, count P l n -> P x -> count P (x::l) (S n).

Grading scheme: Roughly 4 points for each correct constructor. 1 or 2 points taken off on each one
for minor mistakes.

3. (10 points) For each of the types below, write a Coq expression that has that type. (For
example, if the type given were nat->nat, you might write fun x:nat, x+5.) The definitions of
/\ and \/ are given in the appendix (page ??) for reference.

(a) forall X Y, (X -> Y) -> X -> list Y

Possible answers:
fun X (f: X -> Y) (x : X) => [f x]

fun X (f: X -> Y) (x : X) => nil

...

(b) forall (X : Type), (X -> Prop) -> Prop

Possible answers:
fun (X : Type) => fun (P : X -> Prop) => True

fun (X : Type) => fun (P : X -> Prop) => forall x : X, P x

...

(c) forall (X Y : Prop), X -> Y -> (X \/ Y) /\ Y

Possible answers:

fun X Y (HX : X) (HY : Y) =>

conj (X \/ Y) Y (or_introl X Y HX) HY.

...

(d) forall (X Y W Z : Prop), (X /\ Y) \/ (W /\ Z) -> (X \/ Z)

Possible answers:

fun X Y (H : (X /\ Y) \/ (W /\ Z)) =>

match H with

| or_introl HXY => (match HXY with

| conj HX HY => or_introl X Z HX

end)

| or_intror HWZ => (match HWZ with

| conj HW HZ => or_intror X Z HZ

end)

end

...

1

Grading scheme: 2 points for each one of (a) and (b), 3 points for the other ones. One point taken
off for forgetting to bind the types, additional points taken off for other mistakes.

4. (12 points) The following Imp program sets R to the sum of the initial values of X and Y modulo
the initial value of Z:

R ::= X + Y;

WHILE Z <= R DO

R ::= R - Z

END

Your task is to fill in assertions to make this a well-decorated program (see page ?? of the appendix),
relative to an appropriate and post-condition. Please fill in annotations in the spaces provided
below.

{{ True }} ->>

{{ (X + Y) mod Z = (X + Y) mod Z }}

R ::= X + Y;

{{ R mod Z = (X + Y) mod Z }}

WHILE Z <= R DO

{{ R mod Z = (X + Y) mod Z /\ Z <= R }} ->> (1)

{{ (R - Z) mod Z = (X + Y) mod Z }}

R ::= R - Z

{{ R mod Z = (X + Y) mod Z }}

END

{{ R mod Z = (X + Y) mod Z /\ ~(Z <= R) }} ->> (2)

{{ R = (X + Y) mod Z }}

Finally, please mark (by circling the associated arrow ->> and writing either 1 or 2 or both, as
appropriate) any places where the following facts about modular arithmetic are needed to validate
the correctness of the decorations:

(1) a mod z = (a + z) mod z

(2) a < z -> (a mod z) = a

Grading scheme: One point for each pair of consistent annotations, one point for each correctly
applied lemma, plus 4 points for finding the correct loop invariant

5. (10 points) A triangular number is one that can be expressed as a sum of the form

1 + 2 + 3 + ...+ n

for some n. In Coq notation:

Fixpoint tri (n : nat) : nat :=

match n with

0 => 0

2

| S n’ => n + (tri n’)

end.

Definition triangular (t : nat) : Prop :=

exists n, t = tri n.

The following Imp program will terminate only when the initial value of the variable T is a
triangular number.

{{ True }}

X ::= 0;

A ::= 0;

WHILE A <> T DO

X ::= X + 1;

A ::= A + X;

{{ I }}

END

{{ triangular T }}

In the space below, write a suitable invariant for this loop — i.e., an assertion I such that, if we
add I as the annotation at the end of the loop as shown, we can fill in annotations on the rest of
the program to make it well decorated. (The spaces for these additional annotations are not shown,
and you do not need to provide them.)

Answer: I = A = tri X

Grading scheme: 2 to 6 points for wrong invariant. 1 or 2 points off for redundant invariants.

6. (14 points) Consider the following two programs:

P1 = WHILE b DO c END

P2 = IFB b THEN c ELSE SKIP FI; P1

Give a careful informal proof that P1 and P2 are equivalent.

Answer:
By the definition of program equivalence, we need to show that

forall s s’, P1 / s || s’ <-> P2 s || s’

There are two cases to consider:

• Suppose we have P1 / s || s’ for some states s, s’. Inverting that hypothesis gives us two
possible cases:

– beval s b = false and s = s’. By the E_Skip rule, we know that SKIP / s || s.
Thus, the E_IfFalse rule gives us IFB b THEN c ELSE SKIP FI / s || s. Again,
we can apply the E_WhileEnd rule to show that WHILE b DO c END / s || s. Both
combined with the E_Seq rule imply P2 / s || s, which is what we wanted.

3

– Otherwise, beval s b = true, and there is some s’’ such that c / s || s’’ and
P1 / s’’ || s’. The first and second assumptions together with the E_IfTrue rule
imply IFB b THEN c ELSE SKIP s || s’’. Once again, combining this with our third
assumption and the E_Seq rule yields P2 / s || s’, which is what we wanted

• Now, let’s prove the other direction. Suppose that P2 / s || s’. By the shape of P2,
inverting this assumption yields a state s’’ such that IFB b THEN c ELSE SKIP / s || s’’

and P1 / s’’ || s’. We can invert the first assumption again, which leads us to two cases
to consider:

– beval s b = true and c / s || s’’. We need to show P1 / s || s’, which can be
obtained by applying the E_WhileLoop rule with s’’ as an intermediate state.

– beval s b = false and SKIP / s || s’’. The second assumption allows us to con-
clude that s = s’’ by inversion. Thus, we know that P1 / s || s’. But this is exactly
what we wanted to show.

Grading scheme: 13-14 points for perfect or nearly perfect proofs. 9-12 points for mostly correct
proofs with more significant deficiencies. 1-8 points for proofs with major issues.

7. (15 points) Suppose L is some variant of STLC with the same syntax but in which the typing
and single-step reduction rules have been changed in some way (by adding, removing, or changing
rules). Consider the following schematic statement:

“If the (A) theorem (B) for L, then changing L’s (C) relation by (D) a rule might cause
it to (E).”

If we substitute “preservation” for (A), “holds” for (B), “typing” for (C), “adding” for (D), and
“fail” for (E), we obtain the statement “If the preservation theorem holds for L, then changing L’s
typing relation by adding a rule might cause it to fail,” which happens to be true: adding a rule to
the typing relation of a language like the STLC can sometimes destroy the preservation property.

Fill in the last column of the following table to indicate whether the statement obtained by
similarly substituting the values in columns (A) to (E) is true or false. (We’ve done the first one
for you.)

4

(A) (B) (C) (D) (E) T/F

preservation holds typing adding fail T
preservation holds single-step reduction removing fail F
preservation holds typing removing fail T
preservation holds single-step reduction adding fail T
progress holds typing removing fail F
progress holds single-step reduction removing fail T
progress holds typing adding fail T
progress holds single-step reduction adding fail F
preservation fails typing removing hold T
preservation fails single-step reduction removing hold T
preservation fails typing adding hold T
preservation fails single-step reduction adding hold F
progress fails typing removing hold T
progress fails single-step reduction removing hold F
progress fails typing adding hold F
progress fails single-step reduction adding hold T

8. (10 points) Consider the following propositions about typing in STLC. For each one, either give
values for the existentially quantified variables to make the term typeable, or write “not typeable”
and briefly explain why not.

(a) There exist types T and T1 such that

empty |- (λx:T. if x then true else x) ∈ T1

Answers:
True. E.g., we have T = bool, T1 = bool -> bool

(b) For some types T2 and T1,

y:T2 |- (λx:T1. x (y (y x) y)) ∈ Bool

Answers:
Not typeable.

(c) For all types T, there exist types T1 and T2 such that

y:T2, x:T1 |- (y (x true) x) ∈ T

Answers:
T1 = bool -> bool, T2 : bool -> (bool -> bool) -> T

(d) For all types T2 and T1, there exists a type T such that

y:T2 |- (λx:T1. if y x then true else x) ∈ T

Possible answers: Not typeable, T2 = bool, T1 = bool.

(e) There exist types T1 and T2 such that

5

empty |- (λy:T2. λx:T1. if x then y (y (y x)) else x) ∈ Bool

Possible answers: Not typeable.

Grading scheme: 2 points for each correct answer. No points for incorrect answer. One point for
incomplete answer (Not typable, but not stating the reason.) One point off for other mistakes.

9. (20 points) Your job in this problem is to fill in part of the proof of a lemma needed for the
Preservation theorem in the STLC. (Note that the language we are considering here is the standard
SLTC, without subtyping—see page ?? of the appendix.)

The lemma in question is the one stating that substitution preserves typing in STLC:

Theorem substitution_preserves_typing :

forall (t t’ : tm) (x : id) (Γ : context) (T T’ : ty),

Γ, x:T’ |- t ∈ T ->

empty |- t’ ∈ T’ ->

Γ |- [x := t’] t ∈ T.

On the next two pages, you will find an informal proof of this theorem, with two cases on the
second page omitted. Fill in the argument for the missing cases.

Your may find it useful at some point(s) to invoke the following lemma (which you do not need
to prove):

Lemma context_invariance : forall Γ Γ’ t T,

Γ |- t ∈ T ->

(forall x, appears_free_in x t -> Γ x = Γ’ x) ->

Γ’ |- t ∈ T.

Proof: By induction on t. We have the following cases to consider:

• t = true. In this case, we have [x := t’] true = true by the definition of substitution.
By the rule T_True the conclusion follows.

• t = false. Similar.

• t = t1 t2. In this case, we have

[x := t’] (t1 t2)

= ([x := t’] t1) ([x := t’] t2)

by the definition of substitution. By inversion on Gamma, x:T’ |- t ∈ T we know that there
exists a T1 such that

Γ, x:T’ |- t1 ∈ T1 -> T (1)

Γ, x:T’ |- t2 ∈ T1 (2)

In order to apply rule T_App to build the desired derivation, we have to show the following
conditions:

– Γ |- [x := t’] t1 ∈ T1 -> T. This follows from (1) by the IH.

6

– Γ |- [x := t’] t2 ∈ T1. This follows from (2) by the IH.

• t = if t1 then t2 else t3. This case is similar to the one for application.

Sample answer:

• t = y. There are two cases to consider:

– y <> x. In this case, we have [x := t’] y = y by the definition of substitution. Thus,
we need to show that Γ |- y : T. We know that Γ, x:T’ |- y : T. Hence, by
inversion we get (Γ, x:T’) y = Some T, but we also know that (Γ, x:T’) y = Γ y.
So, we can conclude using the T_Var rule.

– y = x. In this case, we have [x := t’] x = t’ by the definition of substitution. Thus,
we need to show that Γ |- t’ ∈ T. Since empty |- t’ &IN T’, we know that t’

has no free variables. Therefore, the hypothesis of the context_invariance lemma is
trivially satisfied, and we can apply it to obtain our result.

• t = λy:T1. t1. There are two cases to consider:

– y <> x. In this case, we have [x := t’] λy:T1.t1 = λy:T1.[x := t’]t1 by the def-
inition of substitution. Thus, we need to show that Γ |- λy:T1.[x := t’]t1 ∈ T.
We know that Γ, x:T’ |- λy:T1.t1 ∈ T. By inversion on this we also know that
T = T1 -> T2 and Γ, x:T’, y:T1 |- t1 ∈ T2. Then, the fact that x <> y implies
that for all variables z,

(Γ, x:T’, y:T1) z

= (extend (extend Γ x T’) y T1) z

= (extend (extend Γ y T1) x T’) z

= (Γ, y:T1, x:T’) z

which in turn implies

Γ, x:T’, y:T1

= Γ, y:T1, x:T’

by functional extensionality. Therefore, Γ, y:T1, x:T’ |- t1 ∈ T2, and our induc-
tion hypothesis allows us to conclude Γ, y:T1|- [x := t’] t1 ∈ T2. By applying the
T_Abs rule we can conclude.

– y = x. In this case, we have [x := t’] λx:T1.t1 = λx:T1.t1 by the definition of
substitution. Thus, we need to show that Γ |- λx:T1.t1 ∈ T. We know

Γ, x:T’ |- λx:T1.t1 ∈ T

and by inversion on this derivation we have

Γ, x:T’, x:T1 |- t1 ∈ T2

which implies Γ, x:T1 |- t1 ∈ T2. Thus, by applying the rule T_Abs we can conclude.

Grading scheme: 18-20 points for perfect or nearly perfect proofs. 13-17 points for mostly correct
proofs with more significant deficiencies. 1-12 points for proofs with major issues.

10. (5 points) The STLC with records and subtyping is summarized in the appendix for reference
(page ??). Indicate whether each of the following claims is true or false for this language.

7

(a) If T <: S, then (T -> U) <: (S -> U).

T F

(b) The subtype relation contains an infinite descending chain — that is, there is an infinite
sequence of types T1, T2, T3, ... such that, for each i, we have Ti+1<:Ti but not Ti<:Ti+1.

T F

(c) There is a record type T that is a supertype of every other record type (that is, S <: T for
every record type S).

T F

(d) There is a type T that is a subtype of every other type (that is, T <: S for every type S).

T F

(e) There is a record type T that is a subtype of every other record type (that is, T <: S for
every record type S).

T F

Grading scheme: One point for each correct item.

8

For Reference...

Some functions on lists

Fixpoint map {X Y:Type} (f:X->Y) (l:list X) : list Y :=

match l with

| [] => []

| h :: t => (f h) :: (map f t)

end.

Fixpoint fold {X Y:Type} (f:X->Y->Y) (y:Y) (l:list X) : Y :=

match l with

| [] => y

| h :: t => f h (fold f y t)

end.

1

Definitions of logical connectives in Coq

Inductive and (P Q : Prop) : Prop :=

conj : P -> Q -> (and P Q).

Inductive or (P Q : Prop) : Prop :=

| or_introl : P -> or P Q

| or_intror : Q -> or P Q.

Notation "P /\ Q" := (and P Q) : type_scope.

Notation "P \/ Q" := (or P Q) : type_scope.

2

Formal definitions for Imp

Syntax

Inductive aexp : Type :=

| ANum : nat -> aexp

| AId : id -> aexp

| APlus : aexp -> aexp -> aexp

| AMinus : aexp -> aexp -> aexp

| AMult : aexp -> aexp -> aexp.

Inductive bexp : Type :=

| BTrue : bexp

| BFalse : bexp

| BEq : aexp -> aexp -> bexp

| BLe : aexp -> aexp -> bexp

| BNot : bexp -> bexp

| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=

| CSkip : com

| CAss : id -> aexp -> com

| CSeq : com -> com -> com

| CIf : bexp -> com -> com -> com

| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=

CSkip.

Notation "X ’::=’ a" :=

(CAss X a) (at level 60).

Notation "c1 ; c2" :=

(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=

(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf e1 e2 e3) (at level 80, right associativity).

3

Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=

| E_Skip : forall st,

SKIP / st || st

| E_Ass : forall st a1 n X,

aeval st a1 = n ->

(X ::= a1) / st || (update st X n)

| E_Seq : forall c1 c2 st st’ st’’,

c1 / st || st’ ->

c2 / st’ || st’’ ->

(c1 ; c2) / st || st’’

| E_IfTrue : forall st st’ b1 c1 c2,

beval st b1 = true ->

c1 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_IfFalse : forall st st’ b1 c1 c2,

beval st b1 = false ->

c2 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_WhileEnd : forall b1 st c1,

beval st b1 = false ->

(WHILE b1 DO c1 END) / st || st

| E_WhileLoop : forall st st’ st’’ b1 c1,

beval st b1 = true ->

c1 / st || st’ ->

(WHILE b1 DO c1 END) / st’ || st’’ ->

(WHILE b1 DO c1 END) / st || st’’

where "c1 ’/’ st ’||’ st’" := (ceval c1 st st’).

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=

forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=

forall (st st’ : state),

(c1 / st || st’) <-> (c2 / st || st’).

4

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=

forall st st’, c / st || st’ -> P st -> Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q)

(at level 90, c at next level)

: hoare_spec_scope.

Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=

forall st, P st -> Q st.

Notation "P _ Q" := (assert_implies P Q) (at level 80).

Hoare logic rules

{{ assn sub X a Q }} X := a {{Q }}
(hoare asgn)

{{P }} SKIP {{P }}
(hoare skip)

{{P }} c1 {{Q }}

{{Q }} c2 {{R }}

{{P }} c1; c2 {{R }}
(hoare seq)

{{P ∧ b }} c1 {{Q }}

{{P ∧ ∼ b }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
(hoare if)

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare while)

{{P ′ }} c {{Q′ }}
P _ P ′

Q′ _ Q

{{P }} c {{Q }}
(hoare consequence)

Decorated programs

A decorated program consists of the program text interleaved with assertions. To check that a
decorated program represents a valid proof, we check that each individual command is locally
consistent with its accompanying assertions in the following sense:

• SKIP is locally consistent if its precondition and postcondition are the same:

5

{{ P }}

SKIP

{{ P }}

• The sequential composition of commands c1 and c2 is locally consistent (with respect to
assertions P and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally
consistent (with respect to Q and R):

{{ P }}

c1;

{{ Q }}

c2

{{ R }}

• An assignment is locally consistent if its precondition is the appropriate substitution of its
postcondition:

{{ P where a is substituted for X }}

X ::= a

{{ P }}

• A conditional is locally consistent (with respect to assertions P and Q) if the assertions at
the top of its “then” and “else” branches are exactly P ∧ b and P ∧ ∼b and if its “then”
branch is locally consistent (with respect to P ∧ b and Q) and its “else” branch is locally
consistent (with respect to P ∧ ∼b and Q):

{{ P }}

IFB b THEN

{{ P ∧ b }}

c1

{{ Q }}

ELSE

{{ P ∧ ∼b }}

c2

{{ Q }}

FI

{{ Q }}

• A while loop is locally consistent if its postcondition is P ∧ ∼b (where P is its precondition)
and if the pre- and postconditions of its body are exactly P ∧ b and P :

{{ P }}

WHILE b DO

{{ P ∧ b }}

c1

{{ P }}

END

{{ P ∧ ∼b }}

6

• A pair of assertions separated by => is locally consistent if the first implies the second (in all
states):

{{ P }} ->>

{{ Q }}

7

STLC with booleans

Syntax

T ::= Bool t ::= x v ::= true

| T -> T | t t | false

| \x:T. t | \x:T. t

| true

| false

| if t then t else t

Small-step operational semantics

value v2

---------------------------- (ST_AppAbs)

(\x:T.t12) v2 ==> [x:=v2]t12

t1 ==> t1’

---------------- (ST_App1)

t1 t2 ==> t1’ t2

value v1

t2 ==> t2’

---------------- (ST_App2)

v1 t2 ==> v1 t2’

-------------------------------- (ST_IfTrue)

(if true then t1 else t2) ==> t1

--------------------------------- (ST_IfFalse)

(if false then t1 else t2) ==> t2

t1 ==> t1’

-- (ST_If)

(if t1 then t2 else t3) ==> (if t1’ then t2 else t3)

8

Typing

Γ x = T

----------- (T_Var)

Γ ` x ∈ T

Γ, x:T11 ` t12 ∈ T12

--------------------------- (T_Abs)

Γ ` \x:T11.t12 ∈ T11->T12

Γ ` t1 ∈ T11->T12

Γ ` t2 ∈ T11

------------------- (T_App)

Γ ` t1 t2 ∈ T12

----------------- (T_True)

Γ ` true ∈ Bool

------------------ (T_False)

Γ ` false ∈ Bool

Γ ` t1 ∈ Bool Γ ` t2 ∈ T Γ ` t3 ∈ T

-- (T_If)

Γ ` if t1 then t2 else t3 ∈ T

Properties of STLC

Theorem preservation :

forall t t’ T,

empty |- t ∈ T ->

t ==> t’ ->

empty |- t’ ∈ T.

Theorem progress :

forall t T,

empty |- t ∈ T ->

value t \/ exists t’, t ==> t’.

9

STLC with booleans, records and subtyping

Syntax

T ::= ... t ::= ... v ::= ...

| {i1:T1, ..., in:Tn} | {i1=t1, ..., in=tn} | {i1=v1, ..., in=vn}

| Top | t.i

Small-step operational semantics

...

ti ==> ti’

--- (ST_Rcd)

{i1=v1, ..., im=vm, in=ti, ...}

==> {i1=v1, ..., im=vm, in=ti’, ...}

t1 ==> t1’

---------------- (ST_Proj1)

t1.i ==> t1’.i

-------------------------- (ST_ProjRcd)

{..., i=vi, ...}.i => vi

Typing

...

Γ ` t1 ∈ T1 ... Γ ` tn ∈ Tn

-- (T_Rcd)

Γ ` {i1=t1,...,in=tn} ∈ {i1:T1,...,in:Tn}

Γ ` t ∈ {...,i:T,...}

-- (T_proj)

Γ ` t.i ∈ T

Γ ` t ∈ S S <: T

--------------------------------------- (T_Sub)

Γ ` t ∈ T

10

Subtyping

S <: U U <: T

---------------- (S_Trans)

S <: T

------ (S_Refl)

T <: T

-------- (S_Top)

S <: Top

T1 <: S1 S2 <: T2

-------------------- (S_Arrow)

S1->S2 <: T1->T2

n > m

--------------------------------- (S_RcdWidth)

{i1:T1...in:Tn} <: {i1:T1...im:Tm}

S1 <: T1 ... Sn <: Tn

---------------------------------- (S_RcdDepth)

{i1:S1...in:Sn} <: {i1:T1...in:Tn}

{i1:S1...in:Sn} is a permutation of {i1:T1...in:Tn}

--- (S_RcdPerm)

{i1:S1...in:Sn} <: {i1:T1...in:Tn}

11

