
CIS 500 — Software Foundations

Midterm I

(Standard and advanced versions together)

October 1, 2013
Answer key

1. (12 points) Write the type of each of the following Coq expressions, or write “ill-typed” if it does
not have one. (The references section contains the definitions of some of the mentioned functions.)

(a) fun n:nat => fun m:nat => n :: m :: n

Answer: ill-typed

(b) plus 3

Answer: nat -> nat

(c) forall (X:Prop), (X -> X) -> X

Answer: Prop

(d) if beq_nat 0 1 then (fun n1 => beq_nat n1) else (fun n1 => ble_nat n1)

Answer: nat -> nat -> bool

(e) forall (x:nat), beq_nat x x

Answer: ill-typed

(f) fun (X:Type) (x:X) => [x;x]

Answer: forall (X:Type), X -> list X

Grading scheme: 2 points for each correct type, and 0 points for wrong or missing type.

2. (12 points) For each of the types below, write a Coq expression that has that type or write
“Empty” if there are no such expressions.

(a) (nat -> bool) -> bool

Possible answers:
fun (f : nat -> bool) => true

fun (f : nat -> bool) => f 0,
...

(b) forall X, X -> list X

Possible answers:
fun X (x : X) => [x]

fun X (x : X) => nil

(c) forall X Y : X -> Y

Answer: Empty

(d) nat -> Prop

Possible answers:
fun (x:nat) => True

fun (x:nat) => False

fun (x:nat) => forall n:nat, n = n

...

(e) forall X Y:Prop, (X \/ Y) -> (X /\ Y)

Answer: Empty

(f) forall (X Y:Prop), ((X -> Y) /\ X) -> Y

Answer:

fun X Y (H : (X -> Y) /\ X) =>

match H with

| conj H1 H2 => H1 H2

end.

Grading scheme: 2 points for each correct expression, 1 point for partially correct expressions, and
0 points for wrong or missing expression.

3. [Standard] (7 points) Briefly explain the difference between Prop and bool. (3-4 sentences at
the most.)

Grading scheme:

• Important differences:

– (3 points) Prop is the built-in type of propositions, which are logical assertions that may
or may not be true (provable).

– (2 points) bool is an inductively defined data type with two constructors true and false.

• Smaller differences:

– (2 points) Prop has no computational content, whereas bool allows computation to proceed
by pattern matching and boolean expressions evaluate to true or false.

• Minor: (no points, unless very small grade) 1 each; incorrect statements incur penalty

– (maybe nothing?)

4. [Standard] (6 points) For each of the given theorems, which set of tactics is needed to prove
it? If more than one of the sets of tactics will work, choose the smallest set. (The definitions of
snoc and ++ are given in the references.)

1

(a) Lemma snoc_app : forall (X:Type) x (l1 l2:list X) ,

(snoc l1 x) ++ l2 = l1 ++ (x::l2).

i. intros, simpl, rewrite, and reflexivity

ii. intros, simpl, rewrite, reflexivity, and induction l1

iii. intros, simpl, rewrite, reflexivity, and induction l2

iv. intros, rewrite, and reflexivity

v. intros and reflexivity

Answer: ii

(b) forall (X:Type) (x y:X), snoc [] x = [y] -> x = y

i. intros, inversion, and reflexivity

ii. intros, destruct, and reflexivity

iii. intros, destruct, inversion and reflexivity

iv. intros, rewrite, induction, and inversion

Answer: i

(c) exists (A:Prop), forall (B:Prop), A -> B

i. intros, exists, and rewrite

ii. intros, exists, and apply

iii. intros, exists, and inversion

iv. intros and inversion

Answer: iii

Grading scheme: 2 points for each correct answer.

5. [Standard] (9 points) Recall the definition of fold from the homework:

Fixpoint fold {X Y:Type} (f: X->Y->Y) (l:list X) (b:Y) : Y :=

match l with

| nil => b

| h :: t => f h (fold f t b)

end.

(a) Complete the definition of the list length function using fold.

Definition fold_length {X : Type} (l : list X) : nat :=

fold (fun _ n => S n) l 0.

(b) Complete the definition of the list map function using fold.

2

Definition fold_map {X Y:Type} (f : X -> Y) (l : list X) : list Y :=

fold (fun x l’ => f x :: l’) l nil.

(c) Complete the definition of the list snoc function using fold.

Definition fold_snoc {X:Type} (l:list X) (v:X) : list X :=

fold (fun h acc => h :: acc) l [v].

Grading scheme: 1 point for the “base” case and 2 points for the “combine” function.

6. [Advanced] (10 points) Write a careful informal proof of the following theorem. Make sure
to state the induction hypothesis explicitly in the inductive step. The definitions of length and
index are given in the references section.

Theorem: For all sets X, lists l: list X, and numbers n, if the length of l is n then index n l = None.
Answer:

By induction on l.

• Suppose l = []. We must show, for all numbers n, that, if length [] = n, then index n [] = None.

This follows immediately from the definition of index.

• Suppose l = x:: l′ for some x and l′, where length l’ = n’ implies index n’ l’ = None, for
any number n′. We must show, for all n, that, if length (x::l’) = n then index n (x::l’) = None.

Let n be the length of l. Since

length l = length (x::l’) = 1 + (length l’)

by the definition of index it suffices to show that

index (length l’) l’ = None

But this follows directly from the induction hypothesis, picking n′ to be length l′.

Grading scheme:

• 2 pts for the base case

• 1 pt for instantiation of the inductive case

• 3 pts for using a general-enough induction hypothesis

• 2 pts for computation of length

• 2 pts for using the IH with the correct instantiation

• -1 for “not informal enough” English

3

• -1 for other minor errors

7. (12 points) An alternate way to encode lists in Coq is the dlist (“doubly-ended list”) type,
which has a third constructor corresponding to the snoc operation on regular lists, as shown below:

Inductive dlist (X:Type) : Type :=

| d_nil : dlist X

| d_cons : X -> dlist X -> dlist X

| d_snoc : dlist X -> X -> dlist X.

(* Make the type parameter implicit. *)

Arguments d_nil {X}.

Arguments d_cons {X} _ _.

Arguments d_snoc {X} _ _.

We can convert any dlist to a regular list by using the following function (the definition of
snoc on lists is given in the references).

Fixpoint to_list {X} (dl: dlist X) : list X :=

match dl with

| d_nil => []

| d_cons x l => x::(to_list l)

| d_snoc l x => snoc (to_list l) x

end.

(a) Just as we saw in the homework with the alternate “binary” encoding of natural numbers,
there may be multiple dlists that represent the same list. Demonstrate this by giving
definitions of example1 and example2 such that the subsequent Lemma is provable (there is
no need to prove it).

Definition example1 : dlist nat :=

One Answer: d_cons 0 d_nil

Definition example2 : dlist nat :=

One Answer: d_snoc d_nil 0

Grading scheme: 2 points total

Lemma distinct_dlists_to_same_list :

example1 <> example2 /\ (to_list example1) = (to_list example2).

(b) It is also possible to define most list operations directly on the dlist representation. Complete
the following function for appending two dlists:

Fixpoint dapp {X} (l1 l2: dlist X) : dlist X :=

Possible Answers:

4

match l1 with

| d_nil => l2

| d_cons x l => d_cons x (dapp l l2)

| d_snoc l x => dapp l (d_cons x l2)

end.

or

match l2 with

| d_nil => l1

| d_cons x l => dapp (d_snoc l1 x) l2

| d_snoc l x => d_snoc (dapp l1 l2) x

end.

Grading scheme: Two points for each case of the match. -1 for too complex or otherwise
minor problems.

(c) The dapp function from part (b) should satisfy the following correctness lemma that states
that it agrees with the list append operation. (The ++ function is given in the references.)

Lemma dapp_correct : forall (X:Type) (l1 l2:dlist X),

to_list (dapp l1 l2) = (to_list l1) ++ (to_list l2).

Proof.

intros X l1.

induction l1 as [| x l| l x].

Case "d_nil".

...

Case "d_cons".

...

Case "d_snoc".

...

Qed.

• What induction hypothesis is available in the d_cons case of the proof?

i. to_list (dapp (d_cons x l) l2) = (to_list (d_cons x l)) ++ (to_list l2)

ii. to_list (dapp l l2) = (to_list l) ++ (to_list l2)

iii. forall l2 : dlist X, to_list (dapp l l2) = to_list l ++ to_list l2

iv. forall l2 : dlist X,

to_list (dapp (d_cons x l) l2) = to_list (d_cons x l) ++ to_list l2

Answer: iii

• What induction hypothesis is available in the d_snoc case of the proof?

5

i. to_list (dapp (d_snoc l x) l2) = (to_list (d_snoc l x)) ++ (to_list l2)

ii. to_list (dapp l l2) = (to_list l) ++ (to_list l2)

iii. forall l2 : dlist X, to_list (dapp l l2) = to_list l ++ to_list l2

iv. forall l2 : dlist X,

to_list (dapp (d_snoc l x) l2) = to_list (d_snoc l x) ++ to_list l2

Answer: iii

Grading scheme: 2 points per answer

8. (12 points) In this problem, your task is to find a short English summary of the meaning of a
proposition defined in Coq. For example, if we gave you this definition...

Inductive D : nat -> nat -> Prop :=

| D1 : forall n, D n 0

| D2 : forall n m, (D n m) -> (D n (n + m)).

... your summary could be “D m n holds when m divides n with no remainder.”

(a) Definition R (m : nat) := ~(D 2 m).

(where D is given at the top of the page).

R m holds when m is odd.

(b) Inductive R {X:Type} : list X -> list X -> Prop :=

| R1 : forall l1 l2, R l1 (l1 ++ l2)

| R2 : forall l1 l2 x, R l1 l2 -> R l1 (x::l2)

R X l1 l2 holds when l1 occurs as a sublist of the list l2

(c) Inductive R {X:Type} (P:X -> Prop) : list X -> Prop :=

| R1 : R P []

| R2 : forall x l, P x -> R P l -> R P (x::l).

R X P l holds when all the elements of l satisfy the predicate P.

(d) Inductive R {X:Type} (P:X -> Prop) : list X -> Prop :=

| R1 : forall x l, P x -> R P (x::l)

| R2 : forall x l, R P l -> R P (x::l).

R X P l holds when there exists an elements of l satisfying the predicate P.

Grading scheme: 3 points per question. Partial credit awarded for “close” answers.

9. [Advanced] (12 points) Recall that a binary search tree (over natural numbers) is a binary
tree with elements stored at each node such that:

6

• An empty tree is a binary search tree.

• A non-empty tree is a binary search tree if the root element is greater than every element
in the left sub-tree, smaller than every element in the right sub-tree, and the left and right
sub-trees are themselves binary search trees.

Use the following definition of polymorphic binary trees:

Inductive tree (X:Type) : Type :=

| empty : tree X

| node : tree X -> X -> tree X -> tree X.

(* make the type X implicit *)

Arguments empty {X}.

Arguments node {X} _ _ _.

Formalize the binary search tree invariant as an indexed proposition bst of type tree nat -> Prop.
You may find it helpful to define auxilliary propositions.
One Answer:

Inductive tree_all {X:Type} (P:X -> Prop) : tree X -> Prop :=

| empty_all : tree_all P empty

| node_all : forall (lt rt: tree X) (x:X),

tree_all P lt -> P x -> tree_all P rt -> tree_all P (node lt x rt).

Definition tree_lt (n:nat) : tree nat -> Prop :=

tree_all (fun x => x < n).

Definition tree_gt (n:nat) : tree nat -> Prop :=

tree_all (fun x => n > x).

Inductive bst : tree nat -> Prop :=

| empty_bst : bst empty

| node_bst : forall (lt rt: tree nat) (x:nat),

tree_lt x lt -> bst lt -> tree_gt x rt -> bst rt -> bst (node lt x rt).

Grading scheme:

• 3 points for the empty case of the bst predicate.

• 5 points for the node case of the bst predicate, one point for each “piece” (e.g. tree lt)

• 4 points for proper definitions of the auxilliary predicates tree lt and tree gt.

• Small amounts of partial credit for “close” answers.

7

For Reference

Inductive nat : Type :=

| O : nat

| S : nat -> nat.

Inductive option (X:Type) : Type :=

| Some : X -> option X

| None : option X.

Inductive list (X:Type) : Type :=

| nil : list X

| cons : X -> list X -> list X.

Fixpoint length (X:Type) (l:list X) : nat :=

match l with

| nil => 0

| cons h t => S (length X t)

end.

Fixpoint index {X : Type} (n : nat)

(l : list X) : option X :=

match l with

| [] => None

| a :: l’ => if beq_nat n O then Some a else index (pred n) l’

end.

Fixpoint app (X : Type) (l1 l2 : list X)

: (list X) :=

match l1 with

| nil => l2

| cons h t => cons X h (app X t l2)

end.

Notation "x ++ y" := (app x y)

(at level 60, right associativity).

8

Fixpoint snoc (X:Type) (l:list X) (v:X) : (list X) :=

match l with

| nil => cons X v (nil X)

| cons h t => cons X h (snoc X t v)

end.

Inductive and (P Q : Prop) : Prop :=

conj : P -> Q -> (and P Q).

Notation "P /\ Q" := (and P Q) : type_scope.

Inductive or (P Q : Prop) : Prop :=

| or_introl : P -> or P Q

| or_intror : Q -> or P Q.

Notation "P \/ Q" := (or P Q) : type_scope.

Inductive False : Prop := .

Definition not (P:Prop) := P -> False.

Notation "~ x" := (not x) : type_scope.

Inductive ex (X:Type) (P : X->Prop) : Prop :=

ex_intro : forall (witness:X), P witness -> ex X P.

Notation "’exists’ x , p" := (ex _ (fun x => p))

(at level 200, x ident, right associativity) : type_scope.

Fixpoint plus (n : nat) (m : nat) : nat :=

match n with

| O => m

| S n’ => S (plus n’ m)

end.

Notation "x + y" := (plus x y)(at level 50, left associativity)

: nat_scope.

9

Fixpoint beq_nat (n m : nat) : bool :=

match n, m with

| O, O => true

| S n’, S m’ => beq_nat n’ m’

| _, _ => false

end.

Fixpoint ble_nat (n m : nat) : bool :=

match n with

| O => true

| S n’ =>

match m with

| O => false

| S m’ => ble_nat n’ m’

end

end.

10

