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1. (12 points) Write the type of each of the following Coq expressions, or write “ill-typed” if it does
not have one. (The references section contains the definitions of some of the mentioned functions.)

(a) fun n:nat => fun m:nat => n :: m :: n

(b) plus 3

(c) forall (X:Prop), (X -> X) -> X

(d) if beq_nat 0 1 then (fun n1 => beq_nat n1) else (fun n1 => ble_nat n1)

(e) forall (x:nat), beq_nat x x

(f) fun (X:Type) (x:X) => [x;x]
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2. (12 points) For each of the types below, write a Coq expression that has that type or write
“Empty” if there are no such expressions.

(a) (nat -> bool) -> bool

(b) forall X, X -> list X

(c) forall X Y : X -> Y

(d) nat -> Prop

(e) forall X Y:Prop, (X \/ Y) -> (X /\ Y)

(f) forall (X Y:Prop), ((X -> Y) /\ X) -> Y
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3. (7 points) Briefly explain the difference between Prop and bool. (3-4 sentences at the most.)

4. (6 points) For each of the given theorems, which set of tactics is needed to prove it? If more
than one of the sets of tactics will work, choose the smallest set. (The definitions of snoc and ++

are given in the references.)

(a) Lemma snoc_app : forall (X:Type) x (l1 l2:list X) ,

(snoc l1 x) ++ l2 = l1 ++ (x::l2).

i. intros, simpl, rewrite, and reflexivity

ii. intros, simpl, rewrite, reflexivity, and induction l1

iii. intros, simpl, rewrite, reflexivity, and induction l2

iv. intros, rewrite, and reflexivity

v. intros and reflexivity

(b) forall (X:Type) (x y:X), snoc [] x = [y] -> x = y

i. intros, inversion, and reflexivity

ii. intros, destruct, and reflexivity

iii. intros, destruct, inversion and reflexivity

iv. intros, rewrite, induction, and inversion

(c) exists (A:Prop), forall (B:Prop), A -> B

i. intros, exists, and rewrite

ii. intros, exists, and apply

iii. intros, exists, and inversion

iv. intros and inversion
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5. (9 points) Recall the definition of fold from the homework:

Fixpoint fold {X Y:Type} (f: X->Y->Y) (l:list X) (b:Y) : Y :=

match l with

| nil => b

| h :: t => f h (fold f t b)

end.

(a) Complete the definition of the list length function using fold.

Definition fold_length {X : Type} (l : list X) : nat :=

(b) Complete the definition of the list map function using fold.

Definition fold_map {X Y:Type} (f : X -> Y) (l : list X) : list Y :=

(c) Complete the definition of the list snoc function using fold.

Definition fold_snoc {X:Type} (l:list X) v :=
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6. (12 points) An alternate way to encode lists in Coq is the dlist (“doubly-ended list”) type,
which has a third constructor corresponding to the snoc operation on regular lists, as shown below:

Inductive dlist (X:Type) : Type :=

| d_nil : dlist X

| d_cons : X -> dlist X -> dlist X

| d_snoc : dlist X -> X -> dlist X.

(* Make the type parameter implicit. *)

Arguments d_nil {X}.

Arguments d_cons {X} _ _.

Arguments d_snoc {X} _ _.

We can convert any dlist to a regular list by using the following function (the definition of
snoc on lists is given in the references).

Fixpoint to_list {X} (dl: dlist X) : list X :=

match dl with

| d_nil => []

| d_cons x l => x::(to_list l)

| d_snoc l x => snoc (to_list l) x

end.

(a) Just as we saw in the homework with the alternate “binary” encoding of natural numbers,
there may be multiple dlists that represent the same list. Demonstrate this by giving
definitions of example1 and example2 such that the subsequent Lemma is provable (there is
no need to prove it).

Definition example1 : dlist nat :=

Definition example2 : dlist nat :=

Lemma distinct_dlists_to_same_list :

example1 <> example2 /\ (to_list example1) = (to_list example2).
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(b) It is also possible to define most list operations directly on the dlist representation. Complete
the following function for appending two dlists:

Fixpoint dapp {X} (l1 l2: dlist X) : dlist X :=

(c) The dapp function from part (b) should satisfy the following correctness lemma that states
that it agrees with the list append operation. (The ++ function is given in the references.)

Lemma dapp_correct : forall (X:Type) (l1 l2:dlist X),

to_list (dapp l1 l2) = (to_list l1) ++ (to_list l2).

Proof.

intros X l1.

induction l1 as [| x l| l x].

Case "d_nil".

...

Case "d_cons".

...

Case "d_snoc".

...

Qed.

• What induction hypothesis is available in the d_cons case of the proof?

i. to_list (dapp (d_cons x l) l2) = (to_list (d_cons x l)) ++ (to_list l2)

ii. to_list (dapp l l2) = (to_list l) ++ (to_list l2)

iii. forall l2 : dlist X, to_list (dapp l l2) = to_list l ++ to_list l2

iv. forall l2 : dlist X,

to_list (dapp (d_cons x l) l2) = to_list (d_cons x l) ++ to_list l2
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• What induction hypothesis is available in the d_snoc case of the proof?

i. to_list (dapp (d_snoc x l) l2) = (to_list (d_snoc x l)) ++ (to_list l2)

ii. to_list (dapp l l2) = (to_list l) ++ (to_list l2)

iii. forall l2 : dlist X, to_list (dapp l l2) = to_list l ++ to_list l2

iv. forall l2 : dlist X,

to_list (dapp (d_snoc x l) l2) = to_list (d_snoc x l) ++ to_list l2
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7. (12 points) In this problem, your task is to find a short English summary of the meaning of a
proposition defined in Coq. For example, if we gave you this definition...

Inductive D : nat -> nat -> Prop :=

| D1 : forall n, D n 0

| D2 : forall n m, (D n m) -> (D n (n + m)).

... your summary could be “D m n holds when m divides n with no remainder.”

(a) Definition R (m : nat) := ~(D 2 m).

(where D is given at the top of the page).

R m holds when:

(b) Inductive R {X:Type} : list X -> list X -> Prop :=

| R1 : forall l1 l2, R l1 (l1 ++ l2)

| R2 : forall l1 l2 x, R l1 l2 -> R l1 (x::l2)

R X l1 l2 holds when:

(c) Inductive R {X:Type} (P:X -> Prop) : list X -> Prop :=

| R1 : R P []

| R2 : forall x l, P x -> R P l -> R P (x::l).

R X P l holds when:

(d) Inductive R {X:Type} (P:X -> Prop) : list X -> Prop :=

| R1 : forall x l, P x -> R P (x::l)

| R2 : forall x l, R P l -> R P (x::l).

R X P l holds when:
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For Reference

Inductive nat : Type :=

| O : nat

| S : nat -> nat.

Inductive option (X:Type) : Type :=

| Some : X -> option X

| None : option X.

Inductive list (X:Type) : Type :=

| nil : list X

| cons : X -> list X -> list X.

Fixpoint length (X:Type) (l:list X) : nat :=

match l with

| nil => 0

| cons h t => S (length X t)

end.

Fixpoint index {X : Type} (n : nat)

(l : list X) : option X :=

match l with

| [] => None

| a :: l’ => if beq_nat n O then Some a else index (pred n) l’

end.

Fixpoint app (X : Type) (l1 l2 : list X)

: (list X) :=

match l1 with

| nil => l2

| cons h t => cons X h (app X t l2)

end.

Notation "x ++ y" := (app x y)

(at level 60, right associativity).
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Fixpoint snoc (X:Type) (l:list X) (v:X) : (list X) :=

match l with

| nil => cons X v (nil X)

| cons h t => cons X h (snoc X t v)

end.

Inductive and (P Q : Prop) : Prop :=

conj : P -> Q -> (and P Q).

Notation "P /\ Q" := (and P Q) : type_scope.

Inductive or (P Q : Prop) : Prop :=

| or_introl : P -> or P Q

| or_intror : Q -> or P Q.

Notation "P \/ Q" := (or P Q) : type_scope.

Inductive False : Prop := .

Definition not (P:Prop) := P -> False.

Notation "~ x" := (not x) : type_scope.

Inductive ex (X:Type) (P : X->Prop) : Prop :=

ex_intro : forall (witness:X), P witness -> ex X P.

Notation "’exists’ x , p" := (ex _ (fun x => p))

(at level 200, x ident, right associativity) : type_scope.

Fixpoint plus (n : nat) (m : nat) : nat :=

match n with

| O => m

| S n’ => S (plus n’ m)

end.

Notation "x + y" := (plus x y)(at level 50, left associativity)

: nat_scope.
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Fixpoint beq_nat (n m : nat) : bool :=

match n, m with

| O, O => true

| S n’, S m’ => beq_nat n’ m’

| _, _ => false

end.

Fixpoint ble_nat (n m : nat) : bool :=

match n with

| O => true

| S n’ =>

match m with

| O => false

| S m’ => ble_nat n’ m’

end

end.
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