
CIS 500 — Software Foundations

Midterm II

(Advanced version)

November 7, 2013

Name:

Pennkey (e.g. bcpierce):

Scores:

1 16

2 12

3 20

4 10

5 12

6 10

Total: 80

1. (16 points)
Multiple choice. Mark all correct answers—there may be zero or more than one. The definition

of Hoare triples is given on page 13, for reference.

(a) Which instances of assertion P make the following Hoare triple valid?

{{ P }}

X ::= 3;;

Y ::= X + Y

{{ X=3 /\ Y=5 }}

P is . . .

• X = 3 /\ Y = 2

• X = 2 /\ Y = 3

• X = 2 /\ Y = 2

• X = 3 /\ Y = 3

(b) Which instances of assertion P make the following Hoare triple valid?

{{ P }}

X ::= X + Y;;

Y ::= X - Y

{{ X=m /\ Y=n }}

P is . . .

• True

• X = n /\ Y = m

• X = n /\ X + Y = m

• False

1

(c) Which instances of assertion P make the following Hoare triple valid?

{{ P }}

WHILE X <= Y DO

X = X + 1;;

Y = Y + 1

END

{{ False }}

P is . . .

• X = 0 /\ Y = 1

• 2*X <= 2*Y

• X+1 <= Y+2

• Y = X+3

(d) Which instances of assertion Q make the following Hoare triple valid?

{{ X = Y }}

X ::= X + Y;;

Y ::= X - Y

{{ Q }}

Q is . . .

• True

• X = Y + Y

• Y = X - Y

• False

2

2. (12 points) Given the following programs, group together those that are equivalent in Imp
by drawing boxes around their names. For example, if you think programs a through h are all
equivalent to each other, but not to i, your answer should look like this: a, b, c, d, e, f, g, h i .

The definition of program equivalence is repeated on page 13, for reference.

(a) SKIP

(b) X ::= X + 1;;

Y ::= 0

(c) WHILE Y <> 0 DO

Y ::= Y - 1;;

X ::= X + 1

END

(d) WHILE Y = Y DO

X ::= X + 1

END;;

Y ::= 0

(e) WHILE Y <> 0 DO

Y ::= Y - 1

END;;

X ::= X + 1

(f) X ::= X + Y;;

WHILE Y <> 0 DO

Y ::= Y - 2

END

(g) IFB X <> 0 \/ Y <> 0 THEN

SKIP

ELSE

Y ::= X

FI

(h) X := X;;

Y := Y;;

Z := Z

(i) WHILE True DO

SKIP

END

3

3. (20 points) In this exercise we consider extending Imp with “nondeterministic choice of com-
mands” of the form

DO c1 OR c2 OD

where c1 and c2 are commands. The idea is that evaluating such a command results in nondeter-
ministically running exactly one of c1 or c2 but not both.

To formalize the extended language, we first add a clause to the definition of commands:

Inductive com : Type :=

...

| COr : com -> com -> com.

Notation "’DO’ c1 ’OR’ c2 ’OD’" := (COr c1 c2).

(a) Refer to the definition of ceval (page 13) for the evaluation relation of Imp. What rule(s)
must be added to this definition to formalize the behavior of IF1? Write out the additional
rule(s) in formal Coq notation.

(b) Can the operational semantics for this version of Imp be implemented using Coq’s Fixpoint
functions with the following signature?

Fixpoint ceval (st : state) (c : com) : state := ...

Briefly explain why or why not.

4

(c) For each purported theorem about Imp with OR commands below, write either “provable” if
the claim is provable, or give a brief (one sentence) explanation, with a counterexample if
possible, of why the claim is not provable. For your reference, the definition of cequiv, which
remains unchanged from standard Imp, is found on page 13.

i. Theorem thm1 : forall (c:com),

cequiv c (DO c OR c OD).

ii. Theorem thm2 :

cequiv (WHILE BTrue DO SKIP END) (X ::= 0;;

WHILE X = 0 DO

DO X ::= 0 OR X ::= 1 OD

END).

iii. Theorem thm3 :

cequiv (X ::= 1) (X ::= 0;;

WHILE X = 0 DO

DO X ::= 0 OR X ::= 1 OD

END).

iv. Theorem thm4 : forall (c:com),

cequiv c (DO c OR SKIP OD).

5

(d) Write a Hoare proof rule for the OR command. (For reference, the standard Hoare rules for
Imp are provided on page 14.)

Try to come up with a rule that is both sound and as precise as possible.

6

4. (10 points)
The following Imp program computes the minimum of a and b, placing the answer into Z.

{{ True }}

X ::= a;;

Y ::= b;;

Z ::= 0;;

WHILE (X <> 0 /\ Y <> 0) DO

X := X - 1;;

Y := Y - 1;;

Z := Z + 1

END

{{ Z = min a b }}

On the next page, add appropriate annotations to the program in the provided spaces to show
that the Hoare triple given by the outermost pre- and post-conditions is valid. Use informal
notations for mathematical formulae and assertions, but please be completely precise and pedantic
in the way you apply the Hoare rules — i.e., write out assertions in exactly the form given by
the rules (rather than logically equivalent ones). The provided blanks have been constructed so
that, if you work backwards from the end of the program, you should only need to use the rule of
consequence in the places indicated with ->>.

The implication steps in your decoration may rely (silently) on the following facts, as well as
the usual rules of arithmetic:

• (X = 0 \/ Y = 0) -> min X Y = 0

• min (X-1) (Y-1) = (min X Y) - 1

The Hoare rules and the rules for well-formed decorated programs are provided on pages 14
and 15, for reference.

7

{{ True }}

{{ }} ->>

X ::= a;;

{{ }}

Y ::= b;;

{{ }}

Z ::= 0;;

{{ }}

WHILE (X <> 0 /\ Y <> 0) DO

{{ }} ->>

{{ }}

X := X - 1;;

{{ }}

Y := Y - 1;;

{{ }}

Z := Z + 1

{{ }}

END

{{ }} ->>

{{ Z = min a b }}

8

5. (12 points)
Let us write exp m n for the exponentiation function mn. The following program computes

exp m n and stores the answer into Y. For n = 0, the program is trivial.
For n > 0, the program works in two stages. It first uses “repeated squaring” to get close to

mn quickly. That is, the first loop computes Y = m1 then Y = m2, Y = m4, Y = m8 and so on,
where Y = mX and X = 2k for some k. This first stage terminates when X = 2k ≤ n < 2k+1. The
remaining n − 2k factors of m are completed using the usual “iterative” method of multiplying Y

by m until the desired power is reached.

{{ True }}

IFB n = 0 THEN

Y ::= 1

ELSE

Y ::= m;;

X ::= 1;;

WHILE n <= (2 * X) DO

Y ::= Y * Y;;

X ::= 2 * X

END;;

WHILE X <> n DO

Y ::= Y * m;;

X ::= X + 1

END

FI

{{ Y = exp m n }}

On the next page, add appropriate annotations to the program in the provided spaces to show
that the Hoare triple given by the outermost pre- and post-conditions is valid.

The implication steps in your decoration may rely (silently) on the following facts about exp,
which follow from the usual rules of arithmetic:

• exp m 0 = 1

• (exp m n) * (exp m n) = exp m (2 * n)

Use informal notations for mathematical formulae and assertions, but please be completely
precise and pedantic in the way you apply the Hoare rules — i.e., write out assertions in exactly
the form given by the rules for decorated programs (rather than logically equivalent ones). The
provided blanks have been constructed so that, if you work backwards from the end of the program,
you should only need to use the rule of consequence in the places indicated with ->>.

The Hoare rules and the rules for well-formed decorated programs are provided on pages 14
and 15, for reference.

9

{{ True }}

IFB n = 0 THEN

{{ }} ->>

{{ }}

Y ::= 1;;

{{ }}

ELSE

{{ }} ->>

{{ }}

Y ::= m;;

{{ }}

X ::= 1;;

{{ }}

WHILE (2 * X) <= n DO

{{ }} ->>

{{ }}

Y ::= Y * Y;;

{{ }}

X ::= 2 * X

{{ }}

END;;

{{ }} ->>

{{ }}

WHILE X <> n DO

{{ }} ->>

{{ }}

Y ::= Y * m;;

{{ }}

X ::= X + 1

{{ }}

END

{{ }} ->>

{{ }}

FI

{{ Y = exp m n }}

10

6. (10 points) Give a careful informal proof of the following theorem that states that program
equivalence is a congruence for WHILE statements.

Theorem CWhile_congruence : forall b1 b1’ c1 c1’,

bequiv b1 b1’ -> cequiv c1 c1’ ->

cequiv (WHILE b1 DO c1 END) (WHILE b1’ DO c1’ END).

Proof.

For your reference, the evaluation relation ceval and the definitions of bequiv and cequiv are
given on page 13.

11

Formal definitions for Imp

Syntax

Inductive aexp : Type := | ANum : nat -> aexp | AId : id -> aexp |

APlus : aexp -> aexp -> aexp | AMinus : aexp -> aexp -> aexp | AMult :

aexp -> aexp -> aexp.

Inductive bexp : Type :=

| BTrue : bexp

| BFalse : bexp

| BEq : aexp -> aexp -> bexp

| BLe : aexp -> aexp -> bexp

| BNot : bexp -> bexp

| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=

| CSkip : com

| CAss : id -> aexp -> com

| CSeq : com -> com -> com

| CIf : bexp -> com -> com -> com

| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=

CSkip.

Notation "l ’::=’ a" :=

(CAss l a) (at level 60).

Notation "c1 ; c2" :=

(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=

(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf e1 e2 e3) (at level 80, right associativity).

12

Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=

| E_Skip : forall st,

SKIP / st || st

| E_Ass : forall st a1 n X,

aeval st a1 = n ->

(X ::= a1) / st || (update st X n)

| E_Seq : forall c1 c2 st st’ st’’,

c1 / st || st’ ->

c2 / st’ || st’’ ->

(c1 ; c2) / st || st’’

| E_IfTrue : forall st st’ b1 c1 c2,

beval st b1 = true ->

c1 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_IfFalse : forall st st’ b1 c1 c2,

beval st b1 = false ->

c2 / st || st’ ->

(IFB b1 THEN c1 ELSE c2 FI) / st || st’

| E_WhileEnd : forall b1 st c1,

beval st b1 = false ->

(WHILE b1 DO c1 END) / st || st

| E_WhileLoop : forall st st’ st’’ b1 c1,

beval st b1 = true ->

c1 / st || st’ ->

(WHILE b1 DO c1 END) / st’ || st’’ ->

(WHILE b1 DO c1 END) / st || st’’

where "c1 ’/’ st ’||’ st’" := (ceval c1 st st’).

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=

forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=

forall (st st’ : state),

(c1 / st || st’) <-> (c2 / st || st’).

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=

forall st st’, c / st || st’ -> P st -> Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q).

13

Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=

forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules

{{ assn sub X a Q }} X := a {{Q }}
(hoare asgn)

{{P }} SKIP {{P }}
(hoare skip)

{{P }} c1 {{Q }}

{{Q }} c2 {{R }}

{{P }} c1; c2 {{R }}
(hoare seq)

{{P ∧ b }} c1 {{Q }}

{{P ∧ ∼ b }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
(hoare if)

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare while)

{{P ′ }} c {{Q′ }}
P _ P ′

Q′ _ Q

{{P }} c {{Q }}
(hoare consequence)

{{P ′ }} c {{Q }}

P _ P ′

{{P }} c {{Q }}
(hoare consequence pre)

{{P }} c {{Q′ }}
Q′ _ Q

{{P }} c {{Q }}
(hoare consequence post)

14

Decorated programs

(a) SKIP is locally consistent if its precondition and postcondition are the same:

{{ P }}

SKIP

{{ P }}

(b) The sequential composition of c1 and c2 is locally consistent (with respect to assertions P

and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally consistent (with
respect to Q and R):

{{ P }}

c1;

{{ Q }}

c2

{{ R }}

(c) An assignment is locally consistent if its precondition is the appropriate substitution of its
postcondition:

{{ P [X |-> a] }}

X ::= a

{{ P }}

(d) A conditional is locally consistent (with respect to assertions P and Q) if the assertions at
the top of its ”then” and ”else” branches are exactly P /\ b and P /\ ~b and if its ”then”
branch is locally consistent (with respect to P /\ b and Q) and its ”else” branch is locally
consistent (with respect to P /\ ~b and Q):

{{ P }}

IFB b THEN

{{ P /\ b }}

c1

{{ Q }}

ELSE

{{ P /\ ~b }}

c2

{{ Q }}

FI

{{ Q }}

15

(e) A while loop with precondition P is locally consistent if its postcondition is P /\ ~b and if
the pre- and postconditions of its body are exactly P /\ b and P:

{{ P }}

WHILE b DO

{{ P /\ b }}

c1

{{ P }}

END

{{ P /\ ~b }}

(f) A pair of assertions separated by ->> is locally consistent if the first implies the second (in
all states):

{{ P }} ->>

{{ P’ }}

16

