
CIS 500: Software Foundations Final Exam
December 20, 2016

Solutions

1 (12 points) (Functional programming in Coq) For each type below, give either a term which
inhabits that type, or write “uninhabited.”

1.1 forall (X Y : Type), Y -> X

Answer: uninhabited (otherwise Coq would be inconsistent!)

1.2 forall (A B : Type), option (A -> B) -> option A -> B

Answer: uninhabited, because we might not be provided a function or an initial A

1.3 forall (A B : Type), option A -> option B

Answer: fun A B : Type => fun x : option A => @None B

1.4 forall (A B C : Type), (A * B -> C) -> A -> B -> C

Answer: fun A B C : Type => fun f : (A*B -> C) => fun a => fun b => f (a, b)

1.5 forall (A B C : Type), ((A -> B) -> C) -> (A * B -> C)

Answer: fun A B C : Type => fun f : ((A->B)->C) => fun ab : A*B => match ab with
(a,b) => f (fun x => b) end

2 (11 points) (Functional programming in Coq) We’ve seen the fold function over lists:

Fixpoint fold_list {A B : Type} (f : A -> B -> B) (b : B) (l : list A) : B :=
match l with
| [] => b
| h :: t => f h (fold_list f b t)
end.

The same idea can be instantiated for a wide variety of inductive data types. For instance,
consider the type of binary trees (annotated with data items at their internal nodes).

Inductive bin (X : Type) :=
| Node : bin X -> X -> bin X -> bin X
| Leaf : bin X

2.1 (6 points) A “fold function” for this type would have the following type:

1

forall A B, (B -> A -> B -> B) -> B -> bin A -> B

Implement fold_bin. Here is the header:

Fixpoint fold_bin {A B : Type} (f : B -> A -> B -> B) (b : B) (t : bin A) : B :=

match t with
| Leaf => b
| Node l x r => f (fold_bin f b l) x (fold_bin f b r)

Here is type of fold_bin again:

forall (A B : Type), (B -> A -> B -> B) -> B -> bin A -> B

Now consider a hypothetical inductive type of truffula trees. A truffula tree has two kinds of
internal nodes: Q nodes with one data element and two children, and P nodes with two data
elements and three children. Its leaves are also of two varieties: they can each be a R with
four data elements or a plain S leaf with no payload.

Inductive truffula (X : Type) :=
| P : X -> X -> truffula X -> truffula X -> truffula X -> truffula X
| Q : X -> truffula X -> truffula X -> truffula X
| R : X -> X -> X -> X -> truffula X
| S : truffula X

2.2 (5 points) What should be the type of a fold function over truffula trees?

fold_truffula :

forall (A B : Type),
(A -> A -> B -> B -> B -> B) ->
(A -> B -> B -> B) ->
(A -> A -> A -> A -> B) ->
B -> truffula A -> B

3 (15 points) (Program equivalence in Imp) For each part, circle True or False. Some parts also
ask for examples, counterexamples, or explanations.

3.1 (1 point) The following programs are equivalent.

Y ::= X * 2

and

2

Y ::= 0;;
WHILE X > 0 DO

Y ::= Y + 2;;
X ::= X - 1;;

DONE

Answer: False (missing X::= 0).

3.2 (1 point) The following programs are equivalent.

X ::= 0

and

IF X = 0 THEN
SKIP

ELSE
WHILE True DO SKIP DONE

FI

Answer: False

3.3 (3 points) The following programs are equivalent for all choices of subcommand c. If you
choose False, give a counterexample (a c that shows that they are not equivalent).

WHILE True DO c DONE and c;; WHILE True DO c DONE

Answer: True

3.4 (3 points) The following programs are equivalent for some choice of subcommand c. If you
choose True, give an example of such a c.

c ;; c and c

Answer: True. For instance for c = SKIP.

3.5 (3 points) The following programs are equivalent for some choice of subcommand c. If you
choose True, give an example of such a c.

WHILE True DO c DONE and c

Answer: True. For instance for c = WHILE True DO SKIP DONE.

3.6 (4 points) For all boolean expressions b and for all subcommands c, there exists some sub-
command d such that the following programs are equivalent. Briefly explain your answer.

3

WHILE b DO IF b THEN
c;; and WHILE True DO SKIP DONE
d ELSE

DONE SKIP
FI

Answer: True. If not b, then trivial. If b, then in the loop body we know that b has at least
one satisfying state; d needs to re-establish a satisfying state for b.

4 [Standard Only] (4 points) (Hoare logic) Circle True or False.

4.1 The Hoare rule {{True }} X ::= 2 {{X = 2 }} can be proven directly using just the hoare_asgn
rule.

Answer: False

4.2 Everything that can be proven using the following rule can also be proven using the hoare_if
rule.

{{P }} c1 {{Q }}
{{P }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
()

Answer: True

5 [Standard Only] (14 points) (Hoare logic)

5.1 WHILE X > 0 DO
X ::= X - 1;;
IF X = Y THEN X ::= X + 1

END

Check the box next to each assertion that is an invariant of this loop.

� True

� X > 0

� X = Y + 1

� X > Y + 1

� X < Y + 1

� False

5.2 R ::= 0;;
X ::= 0;;
WHILE X < Y DO

R ::= R + Y;;
X ::= X + 1

END

Check all assertions that are valid postconditions of this program.

4

� True

� R = X + Y

� R = X * Y

� R = 2 * Y

� R = Y * Y

� False

5.3 R ::= 0;;
X ::= 0;;
WHILE X < Y DO

R ::= R + Z;;
X ::= X + 1

END

Check assertions that are valid postconditions of this program.

� R = Y + Z

� R = Y * Z

Check assertions that are invariants of this loop and are sufficient to prove the postcondi-
tion(s) you checked.

� True

� R = Y * (Z-X)

� X <= Y /\ R = Y * (Z-X)

� R = X * Z

� X <= Y /\ R = X * Z

� False

6 [Advanced Only] (16 points) (Hoare logic) Recall the Hoare logic rule for WHILE loops:

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare_while)

Write a careful informal proof of the correctness of this rule.

Proof: Suppose st is a state satisfying P and that (WHILE b DO c END) / st ⇓ st’. Proceed by
induction on a derivation of (WHILE b DO c END) / st ⇓ st’. Because of the form of the program,
there are just two cases to consider:

1. Suppose (WHILE b DO c END) / st ⇓ st’ by rule E_WhileEnd, with st’ = st and with
beval st b = false. We know P st’ by assumption, and the assertion (~b) st follows
by definition from the fact that beval st b = false, so st’ satisfies the required postcon-
dition.

5

2. Suppose (WHILE b DO c END) / st ⇓ st’ by rule E_WhileLoop, with beval st b = true
and c /st ⇓ st1 and (WHILE b DO c END) / st1 ⇓ st’. By the first premise (using the
fact that beval st b = true implies the assertion b st, plus the assumption that P holds
for st and the definition of validity for Hoare triples), we have P st1. Now, by the induction
hypothesis, the assertion P /\ ~b holds for the state st’, as required.

7 (14 points) (Operational semantics) In this problem, we consider an alternate formulation of
the small-step operational semantics for the simply-typed lambda calculus with booleans (without
subtyping and no products until part (d)).

One annoying thing about the operational semantics is the number of “structural” rules (ST_App1,
ST_App2, ST_If) that we have to deal with. An alternate formulation of the operational semantics
is to give a syntax of “evaluation contexts” E (of type ectx) and “primitive steps” s (which are just
particular terms—those that are “ready to take a top-level step”) like this:

(* Evaluation contexts E : ectx *) (* prim_step : tm -> Prop *)
E ::= [] (* hole *) s ::= (\x:T.t) v

| E t (* ST_App1 *) | if true then t1 else t2
| v E (* ST_App2 *) | if false then t1 else t2
| if E then t1 else t2 (* ST_If *)

Here we use informal syntax rather than formal Coq syntax, to make things easier to read. We use
the usual convention the v stands for a term that is a value. The idea is that E describes a term
with a single “hole” [] in it, into which we can place an arbitrary term. We define the function that
fills the hole by pattern matching on the E like this:

Fixpoint fill (t:tm) (E:ectx) : tm :=
match E with
| [] => t
| E t1 => (fill t E) t1
| v E => v (fill t E)
| if E then t1 else t2 => if (fill t E) then t1 else t2

end.

(Again, this is “Coq pseudocode”: the syntax of the patterns is informal.)
Each non-hole E corresponds to one of the structural rules, which lets us use one evaluation rule

ST_Hole for all of them. We also include one rule for each primitive step, like this:

s ==> t (\x:T.t) v ==> [x:=v]t (ST_AppAbs)
--------------------- (ST_Hole)
fill s E ==> fill t E if true then t1 else t2 ==> t1 (ST_IfTrue)

if false then t1 else t2 ==> t2 (ST_IfFalse)

These rules replace the old definition of the small-step semantics.

7.1 (3 pts.) If we use these evaluation contexts to prove soundness, we need a couple of different
helper lemmas.

The first lemma says that we can always decompose a well-typed term if it is not a value:

6

Lemma decompose : forall (t:tm) (T:ty) ,
` t : T ->
value t \/
exists (E:ectx), exists (s:tm),

prim_step s /\
t = fill s E.

Which of the following proofs would directly require this decompose lemma? (If A needs B
and B needs the lemma, mark only B.)

� canonical forms

� preservation

� progress

� context invariance

� substitution

7.2 (4 pts.) We also need a kind of substitution lemma that relates to fill. A bad attempt at
stating it might be something like this:

Lemma ectx_substitution: forall (E:ectx) (x:id) (T U:ty) (t:tm) Γ,
Γ, x:T ` (fill x E) ∈ U ->
` t ∈ T ->
Γ ` (fill t E) ∈ U.

Unfortunately, the lemma above is not provable (indeed it is false!). Briefly explain why.

Answer: The context E itself might contain x as a free variable and so it won’t be well-typed
when we remove x from the context.

7

7.3 (3 pts.) A better way to state the substitution principal is:

Lemma ectx_substitution: forall (E:ectx) (T U:ty) (s t:tm) Γ,
Γ ` (fill s E) ∈ U -> (* Hyp1 *)
` s ∈ T -> (* Hyp2 *)
` t ∈ T -> (* Hyp3 *)
Γ ` (fill t E) ∈ U.

It would be easiest to prove this fact by induction on which of the following? (Choose one.)

� E � T � U � s
� t � Hyp1 � Hyp2 � Hyp3

7.4 (4 pts.) What would we need to add to the definition of E to support products? (The usual
rules for products are given in the handout. You may need to add more than one clause.)

E ::= ...
|

| (E, t)
| (v, E)
| E.fst
| E.snd

8 (15 points) (Simply typed lambda-calculus) In this problem we will develop a variant of the
simply-typed lambda calculus with natural numbers and an induction operator. The starting point
is the plain simply typed lambda with a base type of natural numbers and constructors for the
constants 0 and successor S. You can find the syntax, typing rules, and small-step evaluation rules
for this part of the language in the handout. Note that, for this problem, we do not consider
subtyping, fix, or any other extensions to the STLC.

Rather than adding if0 and the general recursion operator fix for writing programs over natural
numbers, this extension follows Coq and adds a built-in form of natural-number induction:

t ::= ...
| nat_ind t t t

The term nat_ind tz ts tn acts like a fold over the natural number datatype. The term tz
specifies what to do for the base (zero) case of the induction, and the term ts (successor) shows
how to compute the answer for S n given n itself and the inductive result for n. The argument tn is
the natural number over which induction is being done. Once we have added nat_ind to the STLC,
we can write many familiar programs using natural numbers. For example, here is a function that
adds two natural numbers, defined by induction on n. The base case is just m and the inductive
step computes the successor of the recursive result:

Nat_plus = \n:Nat. \m:Nat. nat_ind m (\x:Nat.\y:Nat. S y) n

8

The steps it takes when computing Nat_plus 2 1 look like this, where we have marked the novel
behavior of nat_ind with !! and where we write 2 as a shorthand for S (S 0), etc.:

(\n:Nat. \m:Nat. nat_ind m (\x:Nat.\y:Nat. S y) n) 2 1
==>

(\m:Nat. nat_ind m (\x:Nat.\y:Nat. S y) 2) 1
==>

nat_ind 1 (\x:Nat.\y:Nat. S y) 2
==> !! (nonzero case)

(\x:Nat.\y:Nat. S y) 1 (nat_ind 1 (\x:Nat.\y:Nat. S y) 1)
==> !! (nonzero case)

(\x:Nat.\y:Nat. S y) 1 ((\x:Nat.\y:Nat. S y) 0 (nat_ind 1 (\x:Nat.\y:Nat. S y) 0))
==> !! (zero case)

(\x:Nat.\y:Nat. S y) 1 ((\x:Nat.\y:Nat. S y) 0 1)
==>

(\x:Nat.\y:Nat. S y) 1 ((\y:Nat. S y) 1)
==>

(\x:Nat.\y:Nat. S y) 1 2
==>

(\y:Nat. S y) 2
==>

3

Intuitively, the small-step operational semantics of nat_ind should work like this:

nat_ind vz vs 3 ==>* vs 2 (vs 1 (vs 0 vz))

8.1 (5 points) First, let’s complete the small-step operational semantics for nat_ind. There are
three congruence rules that evaluate the arguments to nat_ind in order from left-to-right.
The first is:

tz ==> tz’

nat_ind tz ts tn ==> nat_ind tz’ ts tn

Write the other two structural rules below. Use the value predicate as appropriate.

value vz ts ==> ts’

nat_ind vz ts tn ==> nat_ind vz ts’ tn

value vz tn ==> tn’ value vs

nat_ind vz vs tn ==> nat_ind vz vs tn’

After reducing all three arguments to values, the “interesting” rules of the small step semantics
do case analysis on the third argument, yielding the base case, or performing a recursive call
as appropriate. Complete these two rules for the small-step operational semantics of nat_ind.

9

value vz value vs

nat_ind vz vs 0 ==> vz

value vz value vs value vn
--
nat_ind vz vs (S vn) ==> vs n (nat_ind vz vs vn)

8.2 (4 points) It remains to give a typing rule for nat_ind. We know that the third argument to
nat_ind is supposed to be a Nat, so that part is easy. The result type of a nat_ind expression
can be any type T, since we could conceivably construct any value by induction on a natural
number. We have filled in those parts of the typing rule below. Your job is to complete the
typing rule. Consider that this rule should be sound (i.e. satisfy preservation and progress)
with respect to the operational semantics outlined above. For example, the term Nat_plus
defined above should be well-typed according to your rule.

Gamma |- tz : T Gamma |- ts : Nat -> T -> T Gamma |- tn : Nat
--

Gamma |- nat_ind tz ts tn : T

8.3 (4 points) Above, we used nat_ind to define the Nat_plus function. Now, use Nat_plus and
nat_ind to define multiplication of two numbers.

Nat_mult : Nat -> Nat -> Nat

Nat_mult =

\n:Nat. \m:Nat. nat_ind 0 (\x:Nat. \p:Nat. Nat_plus m p) n

9 (25 points) (Simply typed lambda-calculus with subtyping) The syntax, operational semantics,
and typing rules for the simply-typed lambda calculus with subtyping and booleans are given in the
handout.

For each variant of this system described below, indicate which of the properties remain true in
the presence of this rule. For each one, circle either “Remains true” or else “Becomes false.” If a
property becomes false, give a counterexample.

9.1 Consider a variant in which we add the following new subtyping rule:

----------------------- S_ProdArrow)
Top * Top <: Top -> Top

• Determinism of ==>
Answer: Remains true.

10

• Progress
Answer: Becomes false. For example, (true,true) true is typeable, but stuck.

• Preservation
Answer: Remains true.

9.2 Consider a variant in which we add a new term loop with the following reduction and typing
rules:

------------- (ST_Loop) ---------------- (T_Loop)
loop ==> loop Γ ` loop ∈ T

• Determinism of ==>
Answer: Remains true. Each term has at most one rule that applies.

• Progress
Answer: Remains true. Every well-typed term can still take a step, as can loop.

• Preservation
Answer: Remains true. loop can have any type.

9.3 Suppose instead that we add the following typing rule:

Γ ` t1 ∈ U -> T
---------------- (T_App’)
Γ ` t1 t2 ∈ T

• Determinism of ==>
Answer: Remains true.

• Progress
Answer: Remains true.

• Preservation
Answer: Becomes false: (\x:(Bool->Bool). x true) true can be given the type Bool
but it steps to true true which is ill-typed. (The substitution lemma does not apply.)

9.4 Instead, suppose that we add a new term guess T (where T is a type) with the following
reduction rule:

-------------------------------- (ST_GArr)
guess (T -> U) ==> \x:T. guess U

and the following typing rule:

---------------- (T_Guess)
Γ ` guess T ∈ T

11

• Determinism of ==>
Answer: Remains true.

• Progress
Answer: Becomes false. The term guess Bool is stuck.

• Preservation
Answer: Remains true.

9.5 Instead, suppose that we add a new reduction rule:

t ==> t’
-------------------- (ST_LCong)
\x:T. t ==> \x:T. t’

• Determinism of ==>
Answer: Becomes false. The term (\x:T. t) v reduces in two ways, provided t can
reduce

• Progress
Answer: Remains true.

• Preservation
Answer: Remains true.

10 [Standard Only] (10 points) (Subtyping) For each of the following pairs of types, S and T,
circle the appropriate description of how they are ordered by the subtype relation.

10.1 S = Top -> Top
T = (Top -> Top) -> Top

• S<:T

• T<:S

• equivalent (both S<:T and T<:S)

• unrelated (neither S<:T nor T<:S)

10.2 S = {x: Bool, y: Bool -> Top}
T = {x: Top, y: Top -> Bool}

• S<:T

• T<:S

• equivalent

• unrelated

10.3 S = {x: Bool -> Top}
T = {y: Nat, x: Top -> Top}

12

• S<:T
• T<:S
• equivalent
• unrelated

10.4 S = (Bool -> Top) -> (Nat -> Nat)
T = (Top -> Bool) -> Top

• S<:T
• T<:S
• equivalent
• unrelated

10.5 S = {x: Nat, y: Bool} -> Nat
T = {y: Bool, x: Nat} -> Nat

• S<:T
• T<:S
• equivalent
• unrelated

11 [Advanced Only] (12 points) (Subtyping) Give a (careful and detailed) informal proof of
the following lemma about the simply typed lambda-calculus with subtyping (a slight variation on
one we saw in the Subtyping chapter of Software Foundations):

Lemma: If Γ ` s ∈ T1 → T2 and s is a value, then there exist x, S1, and s2 such
that:

• s = \x:S1. s2

• Γ, x:S1 ` s2 ∈ S2

• T1 <: S1

• S2 <: T2

Proof. By induction on the given derivation of Γ ` s ∈ T1 → T2. Since s is a value of arrow type,
the last rule in this derivation must be either T_Abs or T_Sub.

• Suppose the last rule is T_Abs, with s = \x:T1. s2 and Γ, x:T1 ` s2 ∈ T2. All four of the
required conditions are satisfied, with S1 = T1 and S2 = T2 (and noting that T1 <: T1 and
T2 <: T2 by reflexivity of subtyping).

• Suppose the last rule is T_Sub, with Γ ` s ∈ U for some U with U <: T1 → T2. By lemma
sub_inversion_arrow from Sub.v, U = U1 → U2, where T1 <: U1 and U2 <: T2. By the
induction hypothesis, s = \x:S1. s2 for some x, S1, and s2 with Γ, x:S1 ` s2 ∈ S2, U1 <: S1,
and S2 <: U2. By transitivity, T1 <: S1 and S2 <: T2, as required.

For Reference
1

Formal definitions for Imp

Syntax

Inductive aexp : Type := | ANum : nat -> aexp | AId : id -> aexp |
APlus : aexp -> aexp -> aexp | AMinus : aexp -> aexp -> aexp | AMult :
aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
| CAss : id -> aexp -> com
| CSeq : com -> com -> com
| CIf : bexp -> com -> com -> com
| CWhile : bexp -> com -> com.

Notation "’SKIP’" :=
CSkip.

Notation "l ’::=’ a" :=
(CAss l a) (at level 60).

Notation "c1 ;; c2" :=
(CSeq c1 c2) (at level 80, right associativity).

Notation "’WHILE’ b ’DO’ c ’END’" :=
(CWhile b c) (at level 80, right associativity).

Notation "’IFB’ e1 ’THEN’ e2 ’ELSE’ e3 ’FI’" :=
(CIf e1 e2 e3) (at level 80, right associativity).

2

Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=
| E_Skip : forall st,

SKIP / st \\ st
| E_Ass : forall st a1 n X,

aeval st a1 = n ->
(X ::= a1) / st \\ (update st X n)

| E_Seq : forall c1 c2 st st’ st’’,
c1 / st \\ st’ ->
c2 / st’ \\ st’’ ->
(c1 ;; c2) / st \\ st’’

| E_IfTrue : forall st st’ b1 c1 c2,
beval st b1 = true ->
c1 / st \\ st’ ->
(IFB b1 THEN c1 ELSE c2 FI) / st \\ st’

| E_IfFalse : forall st st’ b1 c1 c2,
beval st b1 = false ->
c2 / st \\ st’ ->
(IFB b1 THEN c1 ELSE c2 FI) / st \\ st’

| E_WhileEnd : forall b1 st c1,
beval st b1 = false ->
(WHILE b1 DO c1 END) / st \\ st

| E_WhileLoop : forall st st’ st’’ b1 c1,
beval st b1 = true ->
c1 / st \\ st’ ->
(WHILE b1 DO c1 END) / st’ \\ st’’ ->
(WHILE b1 DO c1 END) / st \\ st’’

where "c1 ’/’ st ’\\’ st’" := (ceval c1 st st’).

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=
forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=
forall (st st’ : state),

(c1 / st \\ st’) <-> (c2 / st \\ st’).

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
forall st st’, c / st \\ st’ -> P st -> Q st’.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q).

3

Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=
forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules

{{ assn_sub X a Q }} X := a {{Q }}
(hoare_asgn)

{{P }} SKIP {{P }}
(hoare_skip)

{{P }} c1 {{Q }}
{{Q }} c2 {{R }}

{{P }} c1;; c2 {{R }}
(hoare_seq)

{{P ∧ b }} c1 {{Q }}
{{P ∧ ∼ b }} c2 {{Q }}

{{P }} IFB b THEN c1 ELSE c2 FI {{Q }}
(hoare_if)

{{P ∧ b }} c {{P }}

{{P }} WHILE b DO c END {{P ∧ ∼ b }}
(hoare_while)

{{P ′ }} c {{Q′ }}
P _ P ′

Q′ _ Q

{{P }} c {{Q }}
(hoare_consequence)

{{P ′ }} c {{Q }}
P _ P ′

{{P }} c {{Q }}
(hoare_consequence_pre)

{{P }} c {{Q′ }}
Q′ _ Q

{{P }} c {{Q }}
(hoare_consequence_post)

4

Decorated programs

1. SKIP is locally consistent if its precondition and postcondition are the same:

{{ P }}
SKIP
{{ P }}

2. The sequential composition of c1 and c2 is locally consistent (with respect to assertions P
and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally consistent (with
respect to Q and R):

{{ P }}
c1;;
{{ Q }}
c2
{{ R }}

3. An assignment is locally consistent if its precondition is the appropriate substitution of its
postcondition:

{{ P [X |-> a] }}
X ::= a
{{ P }}

4. A conditional is locally consistent (with respect to assertions P and Q) if the assertions at the
top of its "then" and "else" branches are exactly P /\ b and P /\ ~b and if its "then" branch
is locally consistent (with respect to P /\ b and Q) and its "else" branch is locally consistent
(with respect to P /\ ~b and Q):

{{ P }}
IFB b THEN

{{ P /\ b }}
c1
{{ Q }}

ELSE
{{ P /\ ~b }}
c2
{{ Q }}

FI
{{ Q }}

5

5. A while loop with precondition P is locally consistent if its postcondition is P /\ ~b and if
the pre- and postconditions of its body are exactly P /\ b and P:

{{ P }}
WHILE b DO

{{ P /\ b }}
c1
{{ P }}

END
{{ P /\ ~b }}

6. A pair of assertions separated by ->> is locally consistent if the first implies the second (in all
states):

{{ P }} ->>
{{ P’ }}

Small Step Semantics

Reserved Notation " t ’/’ st ’==>a’ t’ " (at level 40, st at level 39).

Inductive astep : state -> aexp -> aexp -> Prop :=
| AS_Id : forall st i,

AId i / st ==>a ANum (st i)
| AS_Plus : forall st n1 n2,

APlus (ANum n1) (ANum n2) / st ==>a ANum (n1 + n2)
| AS_Plus1 : forall st a1 a1’ a2,

a1 / st ==>a a1’ ->
(APlus a1 a2) / st ==>a (APlus a1’ a2)

| AS_Plus2 : forall st v1 a2 a2’,
aval v1 ->
a2 / st ==>a a2’ ->
(APlus v1 a2) / st ==>a (APlus v1 a2’)

| AS_Minus : forall st n1 n2,
(AMinus (ANum n1) (ANum n2)) / st ==>a (ANum (minus n1 n2))

| AS_Minus1 : forall st a1 a1’ a2,
a1 / st ==>a a1’ ->
(AMinus a1 a2) / st ==>a (AMinus a1’ a2)

| AS_Minus2 : forall st v1 a2 a2’,
aval v1 ->
a2 / st ==>a a2’ ->
(AMinus v1 a2) / st ==>a (AMinus v1 a2’)

| AS_Mult : forall st n1 n2,
(AMult (ANum n1) (ANum n2)) / st ==>a (ANum (mult n1 n2))

| AS_Mult1 : forall st a1 a1’ a2,
a1 / st ==>a a1’ ->
(AMult a1 a2) / st ==>a (AMult a1’ a2)

6

| AS_Mult2 : forall st v1 a2 a2’,
aval v1 ->
a2 / st ==>a a2’ ->
(AMult v1 a2) / st ==>a (AMult v1 a2’)

where " t ’/’ st ’==>a’ t’ " := (astep st t t’).

Reserved Notation " t ’/’ st ’==>’ t’ ’/’ st’ "
(at level 40, st at level 39, t’ at level 39).

Inductive cstep : (com * state) -> (com * state) -> Prop :=
| CS_AssStep : forall st i a a’,

a / st ==>a a’ ->
(i ::= a) / st ==> (i ::= a’) / st

| CS_Ass : forall st i n,
(i ::= (ANum n)) / st ==> SKIP / (t_update st i n)

| CS_SeqStep : forall st c1 c1’ st’ c2,
c1 / st ==> c1’ / st’ ->
(c1 ;; c2) / st ==> (c1’ ;; c2) / st’

| CS_SeqFinish : forall st c2,
(SKIP ;; c2) / st ==> c2 / st

| CS_IfTrue : forall st c1 c2,
IFB BTrue THEN c1 ELSE c2 FI / st ==> c1 / st

| CS_IfFalse : forall st c1 c2,
IFB BFalse THEN c1 ELSE c2 FI / st ==> c2 / st

| CS_IfStep : forall st b b’ c1 c2,
b / st ==>b b’ ->

IFB b THEN c1 ELSE c2 FI / st
==> (IFB b’ THEN c1 ELSE c2 FI) / st

| CS_While : forall st b c1,
(WHILE b DO c1 END) / st

==> (IFB b THEN (c1;; (WHILE b DO c1 END)) ELSE SKIP FI) / st
where " t ’/’ st ’==>’ t’ ’/’ st’ " := (cstep (t,st) (t’,st’)).

7

STLC with booleans

Syntax

T ::= Bool t ::= x v ::= true
| T -> T | t t | false

| \x:T. t | \x:T. t
| true
| false
| if t then t else t

Small-step operational semantics

value v2
---------------------------- (ST_AppAbs)
(\x:T.t12) v2 ==> [x:=v2]t12

t1 ==> t1’
---------------- (ST_App1)
t1 t2 ==> t1’ t2

value v1
t2 ==> t2’

---------------- (ST_App2)
v1 t2 ==> v1 t2’

-------------------------------- (ST_IfTrue)
(if true then t1 else t2) ==> t1

--------------------------------- (ST_IfFalse)
(if false then t1 else t2) ==> t2

t1 ==> t1’
-- (ST_If)
(if t1 then t2 else t3) ==> (if t1’ then t2 else t3)

8

Typing

Γ x = T
-------------- (T_Var)
Γ ` x ∈ T

Γ, x:T11 ` t12 ∈ T12
---------------------------- (T_Abs)
Γ ` \x:T11.t12 ∈ T11->T12

Γ ` t1 ∈ T11->T12
Γ ` t2 ∈ T11

---------------------- (T_App)
Γ ` t1 t2 ∈ T12

-------------------- (T_True)
Γ ` true ∈ Bool

--------------------- (T_False)
Γ ` false ∈ Bool

Γ ` t1 ∈ Bool Γ ` t2 ∈ T Γ ` t3 ∈ T
-- (T_If)

Γ ` if t1 then t2 else t3 ∈ T

Properties of STLC

Theorem preservation : forall t t’ T,
empty ` t ∈ T ->
t ==> t’ ->
empty ` t’ ∈ T.

Theorem progress : forall t T,
empty ` t ∈ T ->
value t \/ exists t’, t ==> t’.

9

STLC with products

Extend the STLC with product types, terms, projections, and pair values:

T ::= ... t ::= ... v ::= ...
| T * T | (t,t) | (v, v)

| t.fst
| t.snd

Small-step operational semantics (added to STLC rules)

t1 ==> t1’
-------------------- (ST_Pair1)
(t1,t2) ==> (t1’,t2)

t2 ==> t2’
-------------------- (ST_Pair2)
(v1,t2) ==> (v1,t2’)

t1 ==> t1’
------------------ (ST_Fst1)
t1.fst ==> t1’.fst

------------------ (ST_FstPair)
(v1,v2).fst ==> v1

t1 ==> t1’
------------------ (ST_Snd1)
t1.snd ==> t1’.snd

------------------ (ST_SndPair)
(v1,v2).snd ==> v2

Typing (added to STLC rules)

Γ ` t1 ∈ T1 Γ ` t2 ∈ T2
--------------------------------------- (T_Pair)

Γ ` (t1,t2) ∈ T1*T2

Γ ` t1 ∈ T11*T12
--------------------- (T_Fst)
Γ ` t1.fst ∈ T11

Γ ` t1 ∈ T11*T12
--------------------- (T_Snd)
Γ ` t1.snd ∈ T12

10

Subtyping

Extend the language above with the type Top (terms and values remain unchanged):

T ::= ...
| Top

Add these rules that characterize the subtyping relation:

S <: U U <: T
---------------- (S_Trans)

S <: T

------ (S_Refl)
T <: T

-------- (S_Top)
S <: Top

S1 <: T1 S2 <: T2
-------------------- (S_Prod)
S1 * S2 <: T1 * T2

T1 <: S1 S2 <: T2
-------------------- (S_Arrow)
S1 -> S2 <: T1 -> T2

Typing (added to STLC with products)

All of the ordinary typing rules, plus:

Γ ` t ∈ S S <: T
------------------------- (T_Sub)

Γ ` t ∈ T

11

