CIS 500: Software Foundations Final Exam
December 20, 2016

Name or WPE-I number (please print clearly!):

Directions: This exam booklet contains both the standard and advanced track questions.
Questions with no annotation are for both tracks. Other questions are marked “Standard
Only” or “Advanced Only.” Do not waste time answering questions intended for the other
track.

If you are taking the exam as a WPE-I, you should follow the instructions for the Advanced
track.

If you need extra space for any of your answers, you can use the back of the exam. However,
if you do, make sure to put a clear note on the front of the exam indicating that we should
look at the back!



(12 points) (Functional programming in Coq) For each type below, give either a term which
inhabits that type, or write “uninhabited.”

forall (X Y : Type), Y -> X

forall (A B : Type), Option (A -> B) -> Option A -> B

forall (A B : Type), Option A -> Option B

[1.4] forall (A B C : Type), (A * B ->C) -> A -> B -> C

forall (A B C : Type), ((A ->B) ->C) -> (A * B -> C)



(11 points) (Functional programming in Coq) We’ve seen the fold function over lists:

Fixpoint fold_list {A B : Type} (f : A -> B ->B) (b : B) (1L : list A) : B :=
match 1 with
I O0=>0b
| h :: t =>f h (fold_list £ b t)
end.

The same idea can be instantiated for a wide variety of inductive data types. For instance,
consider the type of binary trees (annotated with data items at their internal nodes).

Inductive bin (X : Type) :=
| Node : bin X -> X -> bin X -> bin X
| Leaf : bin X

(6 points) A “fold function” for this type would have the following type:
forall AB, (B->A ->B ->B) ->B ->bin A -> B

Implement fold_bin. Here is the header:

Fixpoint fold_bin {A B : Type} (f : B -> A ->B ->B) (b : B) (t : bin A) : B :



Here is type of fold_bin again:
forall (A B : Type), (B ->A ->B ->B) ->B -> bin A -> B

Now consider a hypothetical inductive type of truffula trees. A truffula tree has two kinds of
internal nodes: Q nodes with one data element and two children, and P nodes with two data
elements and three children. Its leaves are also of two varieties: they can each be a R with
four data elements or a plain S leaf with no payload.

Inductive truffula (X : Type) :=
| P: X -> X -> truffula X -> truffula X -> truffula X -> truffula X
| Q : X -> truffula X -> truffula X -> truffula X
| R: X ->X ->X ->X -> truffula X
| S : truffula X

(5 points) What should be the type of a fold function over truffula trees?

fold_truffula :



(15 points) (Program equivalence in Imp) For each part, circle True or False. Some parts also
ask for examples, counterexamples, or explanations.

m (1 point) The following programs are equivalent.

Y ::=X x 2
and
Y ::=0;;
WHILE X > 0 DO
Y ::=Y + 2;;
X ::=X-1;;
DONE

True False

m (1 point) The following programs are equivalent.
X ::=0

and

IF X = 0 THEN
SKIP
ELSE

WHILE True DO SKIP DONE
FI

True False

(3 points) The following programs are equivalent for all choices of subcommand c. If you

choose Fulse, give a counterexample (a c that shows that they are not equivalent).

WHILE True DO c DONE and c;; WHILE True DO c DONE

True False



(3 points) The following programs are equivalent for some choice of subcommand c. If you
choose True, give an example of such a c.

c;; C and c

True False

(3 points) The following programs are equivalent for some choice of subcommand c. If you
choose True, give an example of such a c.

WHILE True DO c DONE and c

True False

(4 points) For all boolean expressions b and for all subcommands c, there exists some sub-
command d such that the following programs are equivalent. Briefly explain your answer.

WHILE b DO IF b THEN
c;; and WHILE True DO SKIP DONE
d ELSE
DONE SKIP
FI
True False



[Standard Only] (4 points) (Hoare logic) Circle True or False.

The Hoarerule £ True 3 X ::= 24 X = 23 can be proven directly using just the hoare_asgn
rule.

True False

Everything that can be proven using the following rule can also be proven using the hoare_if
rule.

P} c14Q3
{PF 2€4Q}
£P3 IFB b THEN cl ELSE c2 FI ‘EQB’

0

True False



[Standard Only] (14 points) (Hoare logic)

WHILE X > 0 DO

X ::=X -1;;
IF X =Y THEN X ::= X + 1
END

Check the box next to each assertion that is an invariant of this loop.

[0 True
X>0
X=Y+1
X>Y+1
X<yYy+1

O o0oooao

False

:= 03,
X ::=0;;
X <Y DO
=R +Y;;
X ::=X+1

=)
1]

Check all assertions that are valid postconditions of this program.

U True
R=X
R =X %
R =2
R=Y

I I I I B I
<o

False



R ::=0;;

X ::=0;;
WHILE X < Y DO
R ::=R + Z;;
X ::=X+1
END

Check assertions that are valid postconditions of this program.

O R=Y+ 2
OO R=Y *x Z

Check assertions that are invariants of this loop and are sufficient to prove the postcondi-
tion(s) you checked.

True

R=Y *x (Z-X)

X<=Y/\NR=Y x (Z-X)

R=Xx*x12Z

X<=Y/\R=Xx*12

O0Oo0o0oo0gaod

False



@ [Advanced Only]| (16 points) (Hoare logic) Recall the Hoare logic rule for WHILE loops:

£§PAOVB P}
fP3 WHILE b DO c EDEPA~DE

(hoare while)

Write a careful informal proof of the correctness of this rule.



(14 points) (Operational semantics) In this problem, we consider an alternate formulation of
the small-step operational semantics for the simply-typed lambda calculus with booleans (without
subtyping and no products until part (d)).

One annoying thing about the operational semantics is the number of “structural” rules (ST_App1,
ST_App2, ST_If) that we have to deal with. An alternate formulation of the operational semantics
is to give a syntax of “evaluation contexts” E (of type ectx) and “primitive steps” s (which are just
particular terms—those that are “ready to take a top-level step”) like this:

(¥ Evaluation contexts E : ectx *) (* prim_step : tm -> Prop *)

E ::=[] (* hole *) s ::= (\x:T.t) v
| Et (x ST_Appl *) | if true then tl1 else t2
| v E (* ST_App2 *) | if false then tl else t2
|

if E then tl1 else t2 (x ST_If x*)

Here we use informal syntax rather than formal Coq syntax, to make things easier to read. We use
the usual convention the v stands for a term that is a value. The idea is that E describes a term
with a single “hole” [] in it, into which we can place an arbitrary term. We define the function that
fills the hole by pattern matching on the E like this:

Fixpoint fill (t:tm) (E:ectx) : tm :=
match E with
1 =1t
| E t1 => (fill t E) t1
| v E =>v (fill t E)
| if E then t1 else t2 => if (fill t E) then tl else t2
end.

(Again, this is “Coq pseudocode™ the syntax of the patterns is informal.)
Each non-hole E corresponds to one of the structural rules, which lets us use one evaluation rule
ST_Hole for all of them. We also include one rule for each primitive step, like this:

s ==> t (\x:T.t) v ==> [x:=v]t (ST_AppAbs)

————————————————————— (ST_Hole)
fill s E ==> fill t E if true then t1 else t2 ==> t1 (ST_IfTrue)
if false then tl else t2 ==> t2 (ST_IfFalse)

These rules replace the old definition of the small-step semantics.

There are no questions on this page.

10



(3 pts.) If we use these evaluation contexts to prove soundness, we need a couple of different
helper lemmas.

The first lemma says that we can always decompose a well-typed term if it is not a value:

Lemma decompose : forall (t:tm) (T:ty) ,
Ft:T ->
value t \/
exists (E:ectx), exists (s:tm),
prim_step s /\
t = £fill s E.

Which of the following proofs would directly require this decompose lemma? (If A needs B
and B needs the lemma, mark only B.)

O canonical forms
preservation
progress

context invariance

O 0ooo

substitution

(4 pts.) We also need a kind of substitution lemma that relates to £i11l. A bad attempt at
stating it might be something like this:

Lemma ectx_substitution: forall (E:ectx) (x:id) (T U:ty) (t:tm) T,
I', x:TF (fill x E) € U ->
FteT->
I' = (fi11 t E) € U.

Unfortunately, the lemma above is not provable (indeed it is false!). Briefly explain why.

11



(3 pts.) A better way to state the substitution principal is:

Lemma ectx_substitution: forall (E:ectx) (T U:ty) (s t:tm) T,
I' - (fill s E) € U ->  (* Hypl %)
FseT-> (* Hyp2 *)
FteT-> (x Hyp3 *)
I' F (£fi11 ¢t E) € U.

It would be easiest to prove this fact by induction on which of the following? (Choose one.)

O E o T 0 u O s
0t 0 Hypl 0 Hyp2 U0 Hyp3

(4 pts.) What would we need to add to the definition of E to support products? (The usual
rules for products are given in the handout. You may need to add more than one clause.)

12



(15 points) (Simply typed lambda-calculus) In this problem we will develop a variant of the
simply-typed lambda calculus with natural numbers and an induction operator. The starting point
is the plain simply typed lambda with a base type of natural numbers and constructors for the
constants 0 and successor S. You can find the syntax, typing rules, and small-step evaluation rules
for this part of the language in the handout. Note that, for this problem, we do not consider
subtyping, fix, or any other extensions to the STLC.

Rather than adding if0 and the general recursion operator fix for writing programs over natural
numbers, this extension follows Coq and adds a built-in form of natural-number induction:

t = ...
| nat_ind t t t

The term nat_ind tz ts tn acts like a fold over the natural number datatype. The term tz
specifies what to do for the base (zero) case of the induction, and the term ts (successor) shows
how to compute the answer for S n given n itself and the inductive result for n. The argument tn is
the natural number over which induction is being done. Once we have added nat_ind to the STLC,
we can write many familiar programs using natural numbers. For example, here is a function that
adds two natural numbers, defined by induction on n. The base case is just m and the inductive
step computes the successor of the recursive result:

Nat_plus = \n:Nat. \m:Nat. nat_ind m (\x:Nat.\y:Nat. S y) n

The steps it takes when computing Nat_plus 2 1 look like this, where we have marked the novel
behavior of nat_ind with !! and where we write 2 as a shorthand for S (S 0), etc.:

(\n:Nat. \m:Nat. nat_ind m (\x:Nat.\y:Nat. S y) n) 21

==>
(\m:Nat. nat_ind m (\x:Nat.\y:Nat. S y) 2) 1
==>
nat_ind 1 (\x:Nat.\y:Nat. S y) 2
==> |l (nonzero case)
(\x:Nat.\y:Nat. S y) 1 (nat_ind 1 (\x:Nat.\y:Nat. S y) 1)
==> !l (nonzero case)
(\x:Nat.\y:Nat. S y) 1 ((\x:Nat.\y:Nat. S y) 0 (nat_ind 1 (\x:Nat.\y:Nat. S y) 0))
==> Il (zero case)
(\x:Nat.\y:Nat. S y) 1 ((\x:Nat.\y:Nat. S y) 0 1)
==>
(\x:Nat.\y:Nat. S y) 1 ((\y:Nat. S y) 1)
==>
(\x:Nat.\y:Nat. S y) 12
==>
(\y:Nat. S y) 2
==>

3
Intuitively, the small-step operational semantics of nat_ind should work like this:

nat_ind vz vs 3 ==>*% vs 2 (vs 1 (vs 0 vz))

13



(5 points) First, let’s complete the small-step operational semantics for nat_ind. There are
three congruence rules that evaluate the arguments to nat_ind in order from left-to-right.
The first is:

nat_ind tz ts tn ==> nat_ind tz’ ts tn

Write the other two structural rules below. Use the value predicate as appropriate.

After reducing all three arguments to values, the “interesting” rules of the small step semantics
do case analysis on the third argument, yielding the base case, or performing a recursive call
as appropriate. Complete these two rules for the small-step operational semantics of nat_ind.

14



(4 points) It remains to give a typing rule for nat_ind. We know that the third argument to
nat_ind is supposed to be a Nat, so that part is easy. The result type of a nat_ind expression
can be any type T, since we could conceivably construct any value by induction on a natural
number. We have filled in those parts of the typing rule below. Your job is to complete the
typing rule. Consider that this rule should be sound (i.e. satisfy preservation and progress)
with respect to the operational semantics outlined above. For example, the term Nat_plus
defined above should be well-typed according to your rule.

Gamma |- nat_ind tz ts tn : T

(4 points) Above, we used nat_ind to define the Nat_plus function. Now, use Nat_plus and
nat_ind to define multiplication of two numbers.

Nat_mult : ©Nat -> Nat -> Nat

Nat_mult =

15



@ (25 points) (Simply typed lambda-calculus with subtyping) The syntax, operational semantics,

and typing rules for the simply-typed lambda calculus with subtyping and booleans are given in the
handout.

For each variant of this system described below, indicate which of the properties remain true in
the presence of this rule. For each one, circle either “ Remains true’ or else “Becomes false.” If a
property becomes false, give a counterexample.

Consider a variant in which we add the following new subtyping rule:

——————————————————————— S_ProdArrow)
Top * Top <: Top -> Top

e Determinism of ==>

Remains true Becomes false  (counterezample...)

e Progress

Remains true Becomes false  (counterezample...)

e Preservation

Remains true Becomes false  (counterezample...)

16



Consider a variant in which we add a new term loop with the following reduction and typing
rules:

loop ==> loop I' - loop € T
e Determinism of ==>

Remains true Becomes false  (counterexample...)

e Progress

Remains true Becomes false  (counterexample...)

e Preservation

Remains true Becomes false  (counterexzample...)

17



Suppose instead that we add the following typing rule:

I'Ht1e€eU->T

———————————————— (T_App?)
F'-t1t2€T
e Determinism of ==>
Remains true Becomes false  (counterexample...)
e Progress
Remains true Becomes false  (counterexample...)
e Preservation
Remains true Becomes false  (counterexzample...)

18



Instead, suppose that we add a new term guess T (where T is a type) with the following
reduction rule:

———————————————————————————————— (ST_GArr)
guess (T -> U) ==> \x:T. guess U
and the following typing rule:
———————————————— (T_Guess)
' - guess T €T
e Determinism of ==>
Remains true Becomes false  (counterezample...)
e Progress
Remains true Becomes false  (counterezample...)
e Preservation
Remains true Becomes false  (counterezample...)

19



Instead, suppose that we add a new reduction rule:

t ==> t°
-------------------- (ST_LCong)
\x:T. t ==> \x:T. t’
e Determinism of ==>
Remains true Becomes false  (counterexample...)
e Progress
Remains true Becomes false  (counterexample...)
e Preservation
Remains true Becomes false  (counterexzample...)

20



[Standard Only]| (10 points) (Subtyping) For each of the following pairs of types, S and T,
circle the appropriate description of how they are ordered by the subtype relation.

S = Top -> Top
T = (Top -> Top) -> Top
e S<:T
e T<:S

e cquivalent (both S<:T and T<:S)

e unrelated (neither S<:T nor T<:S9)

10.2 S = {x: Bool, y: Bool -> Top}
T = {x: Top, y: Top -> Bool}

e 3<:T

e T<:S

e cquivalent

e unrelated

10.3 S = {x: Bool -> Top}
T = {y: Nat, x: Top -> Top}
e S<:T
e T<:S

e equivalent

e unrelated

10.4 S = (Bool -> Top) -> (Nat -> Nat)
T = (Top -> Bool) -> Top
e S<:T
e T<:S

e equivalent

e unrelated

10.5 S = {x: Nat, y: Bool} -> Nat
T = {y: Bool, x: Nat} -> Nat

e S<:T

e T<:S

e cquivalent

e unrelated

21



[Advanced Only] (12 points) (Subtyping) Give a (careful and detailed) informal proof of
the following lemma about the simply typed lambda-calculus with subtyping (a slight variation on
one we saw in the Subtyping chapter of Software Foundations):

Lemma: If ' F s € Ty — Ty and s is a value, then there exist x, S;, and ss such
that:

e s =\x:S;.89
e ' x:S1 89 €8y

o T <: 5y

e Sy <: Ty

22



For Reference

Formal definitions for Imp

Syntax

Inductive aexp : Type := | ANum : nat -> aexp | AId : id -> aexp |
APlus : aexp -> aexp -> aexp | AMinus : aexp -> aexp -> aexp | AMult
aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
CAss : id -> aexp -> com
CSeq : com -> com -> com
CIf : bexp -> com -> com -> com
CWhile : bexp -> com -> com.

Notation "’SKIP’" :=

CSkip.
Notation "1 ’::=’ a" :=

(CAss 1 a) (at level 60).
Notation "cl ;; c2" :=

(CSeq c1 c2) (at level 80, right associativity).
Notation "’WHILE’ b ’D0’ c¢ ’END’" :=

(CWhile b c¢) (at level 80, right associativity).
Notation "’IFB’ el ’THEN’ e2 ’ELSE’ e3 ’FI’" :=

(CIf el e2 e3) (at level 80, right associativity).



Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=
| E_Skip : forall st,
SKIP / st \\ st
| E_Ass : forall st al n X,
aeval st al = n ->
(X ::=a1) / st \\ (update st X n)
| E_Seq : forall cl c2 st st’ st’?,
cl / st \\ st’ ->
c2 / st?> \\ st >
(cl ;; c2) / st \\ st
| E_IfTrue : forall st st’ bl cl c2,
beval st bl = true ->
cl / st \\ st’? >
(IFB bl THEN c1 ELSE c2 FI) / st \\ st’
| E_IfFalse : forall st st’ bl cl c2,
beval st bl = false ->
c2 / st \\ st’> ->
(IFB bl THEN c1 ELSE c2 FI) / st \\ st’
| E_WhileEnd : forall bl st ci,
beval st bl = false ->
(WHILE bl DO c1 END) / st \\ st
| E_WhileLoop : forall st st’ st’’ bl ci,
beval st bl = true ->
cl / st \\ st’? >
(WHILE b1 DO c1 END) / st’ \\ st’’ ->
(WHILE bl DO c1 END) / st \\ st?’

where "c1 ?/? st ’\\’ st’" := (ceval cl st st?).

Program equivalence

Definition bequiv (bl b2 : bexp) : Prop :=
forall (st:state), beval st bl = beval st b2.

Definition cequiv (cl c2 : com) : Prop :=
forall (st st’ : state),
(cl / st \\ st?) <=> (c2 / st \\ st?).

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
forall st st’, ¢ / st \\ st -> P st ->Q st’.

Notation "{{ P }} ¢ {{ Q }}" := (hoare_triple P c Q).



Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=
forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules

(hoare asgn)

fassn_sub X a@QBFX :=af{Q}

(hoare skip)
€£PBSKIP{P}

{PBc1€Q}
QB3 c24R}

€§PBct;; c2€R}

(hoare seq)

{PAVRc14Q3B
IPA~DF c24QF

{P% IFB b THEN cl1 ELSE c2 FI4Q}

(hoare if)

€§PAOR P}
€P3 WHILE b DO c ENDEPA~D}

(hoare while)

{PFcEQ
PP
Q —Q

£P3cHdQ}

(hoare consequence)

P 3cdQ}
P—P

4P} cHdQ3}

(hoare consequence pre)

fPRcEQ ¥
Q' —Q
4P} cHQ3}

(hoare consequence post)



Decorated programs

1. SKIP is locally consistent if its precondition and postcondition are the same:

{{ P}
SKIP
{{P1}}

2. The sequential composition of c1 and c2 is locally consistent (with respect to assertions P
and R) if c1 is locally consistent (with respect to P and Q) and c2 is locally consistent (with
respect to Q and R):

{{P3}}
cl;;
{{Q 1}
c2
{{R }}

3. An assignment is locally consistent if its precondition is the appropriate substitution of its
postcondition:

{{P X I[|->al }}
X ::= a
{{P}}

4. A conditional is locally consistent (with respect to assertions P and Q) if the assertions at the
top of its "then" and "else" branches are exactly P /\ band P /\ ~b and if its "then" branch
is locally consistent (with respect to P /\ b and Q) and its "else" branch is locally consistent
(with respect to P /\ ~b and Q):

{{P1}}

IFB b THEN
{{P/\b}}
cl
Q1

ELSE
{{P/\ "b}}
c2
{{Q}

FI

{3



5. A while loop with precondition P is locally consistent if its postcondition is P /\ ~b and if
the pre- and postconditions of its body are exactly P /\ b and P:

{{P1}}

WHILE b DO
{P/\Db}}
cl
{{P1}

END

{{P/\ b }}

6. A pair of assertions separated by ->> is locally consistent if the first implies the second (in all
states):

H{PI >
{{ P}

Small Step Semantics

Reserved Notation " t ’/’ st ’==>a’ t’> " (at level 40, st at level 39).

Inductive astep : state -> aexp -> aexp -> Prop :=
| AS_Id : forall st i,
AId i / st ==>a ANum (st i)
| AS_Plus : forall st nl n2,
APlus (ANum ni1) (ANum n2) / st ==>a ANum (nl + n2)
| AS_Plusl : forall st al al’ a2,
al / st ==>a al’ ->
(APlus al a2) / st ==>a (APlus al’ a2)
| AS_Plus2 : forall st vl a2 a2’,
aval vl ->
a2 / st ==>a a2’ ->
(APlus v1 a2) / st ==>a (APlus vl a2’)
| AS_Minus : forall st nil n2,
(AMinus (ANum n1) (ANum n2)) / st ==>a (ANum (minus nl n2))
| AS_Minusl : forall st al al’ a2,
al / st ==>a al’> ->
(AMinus al a2) / st ==>a (AMinus al’ a2)
| AS_Minus2 : forall st vl a2 a2’,
aval vl ->
a2 / st ==>a a2’ ->
(AMinus v1 a2) / st ==>a (AMinus vl a2’)
| AS_Mult : forall st nl n2,
(AMult (ANum n1) (ANum n2)) / st ==>a (ANum (mult nl n2))
| AS_Multl : forall st al al’ a2,
al / st ==>a al’> ->
(AMult al a2) / st ==>a (AMult al’ a2)



| AS_Mult2 : forall st vl a2 a2’,
aval vl ->
a2 / st ==>a a2’ ->
(AMult vl a2) / st ==>a (AMult vl a2’)
where " t ’/’ st ’==>a’ t’> " := (astep st t t’).

Reserved Notation " t ?/’ st ’==>’ t’> ’/’ st’ "
(at level 40, st at level 39, t’ at level 39).

Inductive cstep : (com * state) -> (com * state) -> Prop :=
| CS_AssStep : forall st i a a’,
a / st ==>a a’> ->
(i ::=a) /st => (1 ::=a’) / st
| CS_Ass : forall st i n,
(i ::= (ANum n)) / st ==> SKIP / (t_update st i n)
| CS_SeqStep : forall st cl cl’ st’ c2,
cl / st ==> c1’ / st’> ->
(cl ;; ¢c2) / st ==> (c1’ ;; c2) / st’
| CS_SeqFinish : forall st c2,
(SKIP ;; c2) / st ==> ¢c2 / st
| CS_IfTrue : forall st cl c2,
IFB BTrue THEN cl1 ELSE c2 FI / st ==> cl1 / st
| CS_IfFalse : forall st cl c2,
IFB BFalse THEN c1 ELSE c2 FI / st ==> c2 / st
| CS_IfStep : forall st b b’ cl c2,
b / st ==>b b’ ->
IFB b THEN c1 ELSE c2 FI / st
==> (IFB b’ THEN c1 ELSE c2 FI) / st
| CS_While : forall st b ci,
(WHILE b DO c1 END) / st
==> (IFB b THEN (c1;; (WHILE b DO c1 END)) ELSE SKIP FI) / st
where " t ’/? st ’==>’ t> ’/? st’> " := (cstep (t,st) (t’,st’)).



STLC with booleans

Syntax
T ::= Bool t i
| T ->T

X v ::= true
tt | false
\x:T. t | \x:T. t
true

false

if t then t else t

Small-step operational semantics

value v2
(T $12) v2 —> [xi=v2l612
t1 ==> t1’
ol 12 > £17 12
value vl
t2 ==> t2’
1 1o o 1 o

(if t1 then t2 else t3)

==> (if t1’ then t2 else t3)

(ST_AppAbs)

(ST_Appl)

(ST_App2)

(ST_IfTrue)

(ST_IfFalse)

(ST_If)



Typing

' F \x:T11.t12 € T11->T12

I' - t1 € T11->T12
' = t2 € T11

I' b false € Bool

I' - t1 € Bool 'Ft2eT '-t3 €T

I' b if t1 then t2 else t3 € T

Properties of STLC

Theorem preservation : forall t t’ T,
empty Ft € T ->
t ==>t> ->
empty - t’ € T.

Theorem progress : forall t T,
empty Ft € T ->
value t \/ exists t’, t ==> t°.

(T_Var)

(T_Abs)

(T_App)

(T_True)

(T_False)

(T_If)



STLC with products

Extend the STLC with product types, terms, projections, and pair values:

T ::= ... t = ... Vo= ...
| T T I (t,t) | (v, v)

| t.fst

| t.snd

Small-step operational semantics (added to STLC rules)

tl ==> t1’

(v1,t2) ==> (v1,t2?)

tl ==> t1°

tl.fst ==> t1’.fst

(v1,v2) .snd ==> v2

Typing (added to STLC rules)
I'Ht1 eTt ' 1t2 € T2

I' B (£t1,t2) € T1xT2

I' F t1 € T11%T12

I' - t1.fst € T11

I' F t1 € T11xT12

I' H t1.snd € T12

(ST_Pairl)

(ST_Pair?2)

(ST_Fst1)

(ST_FstPair)

(ST_Snd1)

(ST_SndPair)

(T_Pair)

(T_Fst)

(T_Snd)



Subtyping

Extend the language above with the type Top (terms and values remain unchanged):

T ::= ...
| Top

Add these rules that characterize the subtyping relation:

________________ (S_Trans)
S<: T
______ (S_Refl)
T<: T
________ (8_Top)
S <: Top
S1 <: T1 S2 <: T2
____________________ (S_Prod)
S1 * 82 <: T1 % T2
T1 <: 81 S2 <: T2
____________________ (S_Arrow)
S1 -> 82 <: T1 -> T2
Typing (added to STLC with products)
All of the ordinary typing rules, plus:
't es S<: T
_________________________ (T_Sub)
r-terT
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