CIS 500: Software Foundations

Final Exam
December 20, 2016
Name or WPE-I number (please print clearly!):

Directions: This exam booklet contains both the standard and advanced track questions. Questions with no annotation are for both tracks. Other questions are marked "Standard Only" or "Advanced Only." Do not waste time answering questions intended for the other track.

If you are taking the exam as a WPE-I, you should follow the instructions for the Advanced track.

If you need extra space for any of your answers, you can use the back of the exam. However, if you do, make sure to put a clear note on the front of the exam indicating that we should look at the back!

1 (12 points) (Functional programming in Coq) For each type below, give either a term which inhabits that type, or write "uninhabited."
1.1 forall (X Y : Type), Y -> X
1.2 forall (A B : Type), Option (A -> B) -> Option A -> B
1.3 forall (A B : Type), Option A -> Option B
1.4 forall (A B C : Type), (A * B -> C) -> A -> B -> C
1.5 forall (A B C : Type), ((A -> B) -> C) -> (A * B -> C)

2 (11 points) (Functional programming in Coq) We've seen the fold function over lists:

```
Fixpoint fold_list {A B : Type} (f : A -> B -> B) (b : B) (l : list A) : B :=
    match l with
    | [] => b
    | h :: t => f h (fold_list f b t)
    end.
```

The same idea can be instantiated for a wide variety of inductive data types. For instance, consider the type of binary trees (annotated with data items at their internal nodes).

```
Inductive bin (X : Type) :=
    | Node : bin X -> X -> bin X -> bin X
    | Leaf : bin X
```

2.1 (6 points) A "fold function" for this type would have the following type:

```
forall A B, (B -> A -> B -> B) -> B -> bin A -> B
```

Implement fold_bin. Here is the header:

Fixpoint fold_bin \{A B : Type\} (f : B -> A -> B -> B) (b : B) (t : bin A) : B :=

Here is type of fold_bin again:

```
forall (A B : Type), (B -> A -> B -> B) -> B -> bin A -> B
```

Now consider a hypothetical inductive type of truffula trees. A truffula tree has two kinds of internal nodes: Q nodes with one data element and two children, and P nodes with two data elements and three children. Its leaves are also of two varieties: they can each be a R with four data elements or a plain S leaf with no payload.

```
Inductive truffula (X : Type) :=
    | P : X -> X -> truffula X -> truffula X -> truffula X -> truffula X
    | Q : X -> truffula X -> truffula X -> truffula X
    | R : X -> X -> X -> X -> truffula X
    | S : truffula X
```

2.2 (5 points) What should be the type of a fold function over truffula trees?

```
fold_truffula :
```

3 (15 points) (Program equivalence in Imp) For each part, circle True or False. Some parts also ask for examples, counterexamples, or explanations.
3.1 (1 point) The following programs are equivalent.

$$
\mathrm{Y}::=\mathrm{X} * 2
$$

and

```
Y ::= 0;;
WHILE X > 0 DO
    Y ::= Y + 2;;
    X ::= X - 1;;
DONE
```

True False
3.2 (1 point) The following programs are equivalent.

```
X ::= 0
```

and

```
IF X = O THEN
    SKIP
ELSE
    WHILE True DO SKIP DONE
FI
```

3.3 (3 points) The following programs are equivalent for all choices of subcommand c. If you choose False, give a counterexample (a c that shows that they are not equivalent).

```
WHILE True DO c DONE and c;; WHILE True DO c DONE
```

True False
3.4 (3 points) The following programs are equivalent for some choice of subcommand c. If you choose True, give an example of such a c.
c ; c and c

True False
3.5 (3 points) The following programs are equivalent for some choice of subcommand c. If you choose True, give an example of such a c.
WHILE True DO c DONE and c
True False
3.6 (4 points) For all boolean expressions b and for all subcommands c, there exists some subcommand d such that the following programs are equivalent. Briefly explain your answer.

```
WHILE b DO
    c;; and
    d
DONE
```

 IF b THEN
 WHILE True DO SKIP DONE
ELSE
\quad SKIP
FI
True False

4 [Standard Only] (4 points) (Hoare logic) Circle True or False.
4.1 The Hoare rule \mathbb{Z} True $\mathbb{X}::=2 \mathbb{Z} X=2 \sharp$ can be proven directly using just the hoare_asgn rule.

True False

4.2 Everything that can be proven using the following rule can also be proven using the hoare_if rule.

$$
\begin{aligned}
& \left\{\begin{array}{l}
P\} c 1\{ \\
\{
\end{array}\right\} \\
& \left\{\begin{array}{l}
P\} c 2 \mathbb{Z} Q\} \\
\hline
\end{array}\right.
\end{aligned}
$$

True False

5 [Standard Only] (14 points) (Hoare logic)
5.1 WHILE $\mathrm{X}>0$ DO $\mathrm{X}::=\mathrm{X}-1 ;$; IF $\mathrm{X}=\mathrm{Y}$ THEN $\mathrm{X}::=\mathrm{X}+1$ END

Check the box next to each assertion that is an invariant of this loop.True$\mathrm{X}>0$$X=Y+1$$X>Y+1$$X<Y+1$False

```
5.2 R ::= 0;;
    X ::= 0;;
    WHILE X < Y DO
    R ::= R + Y;;
    X ::= X + 1
    END
```

Check all assertions that are valid postconditions of this program.True$R=X+Y$$\mathrm{R}=\mathrm{X} * \mathrm{Y}$$R=2 * Y$$R=Y * Y$
False
$5.3 \mathrm{R}::=0 ;$;
X ::= 0; ;
WHILE X < Y DO
$\mathrm{R}::=\mathrm{R}+\mathrm{Z}$; ;
X : : $=\mathrm{X}+1$
END

Check assertions that are valid postconditions of this program.$R=Y+Z$$R=Y * Z$
Check assertions that are invariants of this loop and are sufficient to prove the postcondition(s) you checked.

True$\mathrm{R}=\mathrm{Y} *(\mathrm{Z}-\mathrm{X})$$\mathrm{X}<=\mathrm{Y} / \backslash \mathrm{R}=\mathrm{Y} *(\mathrm{Z}-\mathrm{X})$R $=\mathrm{X} * \mathrm{Z}$$\mathrm{X}<=\mathrm{Y} / \triangle \mathrm{R}=\mathrm{X} * \mathrm{Z}$False

6 [Advanced Only] (16 points) (Hoare logic) Recall the Hoare logic rule for WHILE loops:

$$
\frac{\mathfrak{\{} P \wedge b \mathbb{\}} \mathrm{c}\{P\}}{\{P P\} \text { WHILE } \mathrm{b} \text { DO } \mathrm{c} \operatorname{END} \mathbb{\{} P \wedge \sim b \mathbb{Z}} \text { (hoare_while) }
$$

Write a careful informal proof of the correctness of this rule.

7 (14 points) (Operational semantics) In this problem, we consider an alternate formulation of the small-step operational semantics for the simply-typed lambda calculus with booleans (without subtyping and no products until part (d)).

One annoying thing about the operational semantics is the number of "structural" rules (ST_App1, ST_App2, ST_If) that we have to deal with. An alternate formulation of the operational semantics is to give a syntax of "evaluation contexts" E (of type ectx) and "primitive steps" s (which are just particular terms - those that are "ready to take a top-level step") like this:

```
(* Evaluation contexts E : ectx *) (* prim_step : tm -> Prop *)
E ::= [] (* hole *) s ::= (\x:T.t) v
    | E t (* ST_App1 *) | if true then t1 else t2
    | v E (* ST_App2 *) | if false then t1 else t2
    | if E then t1 else t2 (* ST_If *)
```

Here we use informal syntax rather than formal Coq syntax, to make things easier to read. We use the usual convention the v stands for a term that is a value. The idea is that E describes a term with a single "hole" [] in it, into which we can place an arbitrary term. We define the function that fills the hole by pattern matching on the E like this:

```
Fixpoint fill (t:tm) (E:ectx) : tm :=
    match E with
        | [] => t
        | E t1 => (fill t E) t1
        | v E => v (fill t E)
        | if E then t1 else t2 => if (fill t E) then t1 else t2
    end.
```

(Again, this is "Coq pseudocode": the syntax of the patterns is informal.)
Each non-hole E corresponds to one of the structural rules, which lets us use one evaluation rule ST_Hole for all of them. We also include one rule for each primitive step, like this:

These rules replace the old definition of the small-step semantics.

There are no questions on this page.
7.1 (3 pts.) If we use these evaluation contexts to prove soundness, we need a couple of different helper lemmas.

The first lemma says that we can always decompose a well-typed term if it is not a value:

```
Lemma decompose : forall (t:tm) (T:ty),
    t : T ->
    value t \/
    exists (E:ectx), exists (s:tm),
        prim_step s /\
        t = fill s E.
```

Which of the following proofs would directly require this decompose lemma? (If A needs B and B needs the lemma, mark only B.)canonical formspreservationprogresscontext invariancesubstitution
7.2 (4 pts.) We also need a kind of substitution lemma that relates to fill. A bad attempt at stating it might be something like this:

```
Lemma ectx_substitution: forall (E:ectx) (x:id) (T U:ty) (t:tm) \Gamma,
    \Gamma, x:T \vdash (fill x E) \in U ->
    f t G T ->
    \Gamma\vdash(fill t E) \inU.
```

Unfortunately, the lemma above is not provable (indeed it is false!). Briefly explain why.
7.3 (3 pts.) A better way to state the substitution principal is:

```
Lemma ectx_substitution: forall (E:ectx) (T U:ty) (s t:tm) \Gamma,
\Gamma\vdash(fill s E) \in U -> (* Hyp1 *)
\vdash s T -> (* Hyp2 *)
t G T -> (* Hyp3 *)
\Gamma
```

It would be easiest to prove this fact by induction on which of the following? (Choose one.)$\mathrm{E} \quad \square \mathrm{T}$UstHyp1Hyp2Hyp3
7.4 (4 pts.) What would we need to add to the definition of E to support products? (The usual rules for products are given in the handout. You may need to add more than one clause.)

```
E ::= ...
    |
```

8 (15 points) (Simply typed lambda-calculus) In this problem we will develop a variant of the simply-typed lambda calculus with natural numbers and an induction operator. The starting point is the plain simply typed lambda with a base type of natural numbers and constructors for the constants 0 and successor S. You can find the syntax, typing rules, and small-step evaluation rules for this part of the language in the handout. Note that, for this problem, we do not consider subtyping, fix, or any other extensions to the STLC.

Rather than adding if0 and the general recursion operator fix for writing programs over natural numbers, this extension follows Coq and adds a built-in form of natural-number induction:

```
t ::= ...
| nat_ind t t t
```

The term nat_ind $t z$ ts tn acts like a fold over the natural number datatype. The term tz specifies what to do for the base (zero) case of the induction, and the term ts (successor) shows how to compute the answer for S n given n itself and the inductive result for n . The argument tn is the natural number over which induction is being done. Once we have added nat_ind to the STLC, we can write many familiar programs using natural numbers. For example, here is a function that adds two natural numbers, defined by induction on n. The base case is just m and the inductive step computes the successor of the recursive result:

```
Nat_plus = \n:Nat. \m:Nat. nat_ind m (\x:Nat.\y:Nat. S y) n
```

The steps it takes when computing Nat_plus 21 look like this, where we have marked the novel behavior of nat_ind with !! and where we write 2 as a shorthand for S (S 0), etc.:

```
(\n:Nat. \m:Nat. nat_ind m (\x:Nat.\y:Nat. S y) n) 2 1
    ==>
(\m:Nat. nat_ind m (\x:Nat.\y:Nat. S y) 2) 1
    ==>
nat_ind 1 (\x:Nat.\y:Nat. S y) 2
    ==> !! (nonzero case)
(\x:Nat.\y:Nat. S y) 1 (nat_ind 1 (\x:Nat.\y:Nat. S y) 1)
    ==> !! (nonzero case)
(\x:Nat.\y:Nat. S y) 1 ((\x:Nat.\y:Nat. S y) 0 (nat_ind 1 (\x:Nat.\y:Nat. S y) 0))
    ==> !! (zero case)
(\x:Nat.\y:Nat. S y) 1 ((\x:Nat.\y:Nat. S y) 0 1)
    ==>
(\x:Nat.\y:Nat. S y) 1 ((\y:Nat. S y) 1)
    ==>
(\x:Nat.\y:Nat. S y) 1 2
    ==>
(\y:Nat. S y) 2
    ==>
3
```

Intuitively, the small-step operational semantics of nat_ind should work like this:

```
nat_ind vz vs 3 ==>* vs 2 (vs 1 (vs 0 vz))
```

8.1 (5 points) First, let's complete the small-step operational semantics for nat_ind. There are three congruence rules that evaluate the arguments to nat_ind in order from left-to-right. The first is:

```
    tz ==> tz'
nat_ind tz ts tn ==> nat_ind tz' ts tn
```

Write the other two structural rules below. Use the value predicate as appropriate.

After reducing all three arguments to values, the "interesting" rules of the small step semantics do case analysis on the third argument, yielding the base case, or performing a recursive call as appropriate. Complete these two rules for the small-step operational semantics of nat_ind.
8.2 (4 points) It remains to give a typing rule for nat_ind. We know that the third argument to nat_ind is supposed to be a Nat, so that part is easy. The result type of a nat_ind expression can be any type T, since we could conceivably construct any value by induction on a natural number. We have filled in those parts of the typing rule below. Your job is to complete the typing rule. Consider that this rule should be sound (i.e. satisfy preservation and progress) with respect to the operational semantics outlined above. For example, the term Nat_plus defined above should be well-typed according to your rule.

```
Gamma |- tz : T
```

Gamma |- nat_ind tz ts tn : T
8.3 (4 points) Above, we used nat_ind to define the Nat_plus function. Now, use Nat_plus and nat_ind to define multiplication of two numbers.

Nat_mult : Nat -> Nat -> Nat

Nat_mult =

9 (25 points) (Simply typed lambda-calculus with subtyping) The syntax, operational semantics, and typing rules for the simply-typed lambda calculus with subtyping and booleans are given in the handout.

For each variant of this system described below, indicate which of the properties remain true in the presence of this rule. For each one, circle either "Remains true" or else "Becomes false." If a property becomes false, give a counterexample.
9.1 Consider a variant in which we add the following new subtyping rule:
----------------------- \quad S_ProdArrow)
Top * Top <: Top -> Top

- Determinism of ==>
Remains true Becomes false (counterexample...)
- Progress
Remains true Becomes false (counterexample...)
- Preservation

Remains true Becomes false (counterexample...)
9.2 Consider a variant in which we add a new term loop with the following reduction and typing rules:
------------- (ST_Loop)
loop ==> loop
(T_Loop)
$\Gamma \vdash$ loop $\in T$

- Determinism of ==>
Remains true Becomes false (counterexample...)
- Progress

> Remains true Becomes false (counterexample...)

- Preservation

Remains true Becomes false (counterexample...)
9.3 Suppose instead that we add the following typing rule:

$$
\begin{gather*}
\Gamma \vdash \mathrm{t} 1 \in \mathrm{U}->\mathrm{T} \\
------------\mathrm{t} 1 \mathrm{t} 2 \in \mathrm{~T} \tag{T_App'}
\end{gather*}
$$

- Determinism of ==>
Remains true Becomes false (counterexample...)
- Progress

$$
\text { Remains true } \quad \text { Becomes false (counterexample...) }
$$

- Preservation

Remains true Becomes false (counterexample...)
9.4 Instead, suppose that we add a new term guess T (where T is a type) with the following reduction rule:
--------------------------------- \quad (ST_GArr)
guess (T -> U) $==>~ \ x: T$ guess U
and the following typing rule:

$$
\begin{aligned}
& ---------------\quad \text { (T_Guess) } \\
& \Gamma \vdash \text { guess } T \in T
\end{aligned}
$$

- Determinism of ==>
Remains true Becomes false (counterexample...)
- Progress

Remains true Becomes false (counterexample...)

- Preservation

Remains true Becomes false (counterexample...)
9.5 Instead, suppose that we add a new reduction rule:

$$
\begin{aligned}
& \mathrm{t}==>\mathrm{t}, \\
&------------------ \\
& \backslash \mathrm{x}: \mathrm{T} . \mathrm{t}=>\backslash \mathrm{x}: \mathrm{T} . \mathrm{t},
\end{aligned} \quad \text { (ST_LCong) }
$$

- Determinism of ==>

$$
\text { Remains true } \quad \text { Becomes false (counterexample...) }
$$

- Progress
Remains true Becomes false (counterexample...)
- Preservation

Remains true Becomes false (counterexample...)

10 [Standard Only] (10 points) (Subtyping) For each of the following pairs of types, S and T, circle the appropriate description of how they are ordered by the subtype relation.
10.1

$$
\begin{aligned}
& S=\text { Top }->\text { Top } \\
& T=\text { (Top }->\text { Top) }->\text { Top }
\end{aligned}
$$

- $\mathrm{S}<: \mathrm{T}$
- T<:S
- equivalent (both $\mathrm{S}<: \mathrm{T}$ and $\mathrm{T}<: \mathrm{S}$)
- unrelated (neither $\mathrm{S}<: \mathrm{T}$ nor $\mathrm{T}<: \mathrm{S}$)

```
S = {x: Bool, y: Bool -> Top}
    T = {x: Top, y: Top -> Bool}
```

- $\mathrm{S}<: \mathrm{T}$
- $\mathrm{T}<: \mathrm{S}$
- equivalent
- unrelated
10.3 S = \{x: Bool -> Top\} T = \{y: Nat, $x:$ Top -> Top\}
- $\mathrm{S}<: \mathrm{T}$
- $\mathrm{T}<: \mathrm{S}$
- equivalent
- unrelated
10.4 S = (Bool -> Top) -> (Nat -> Nat) T = (Top -> Bool) -> Top
- $\mathrm{S}<: \mathrm{T}$
- $\mathrm{T}<: \mathrm{S}$
- equivalent
- unrelated
$10.5 \quad \mathrm{~S}=\{\mathrm{x}:$ Nat, $\mathrm{y}:$ Bool\} $->$ Nat T = \{y: Bool, x : Nat $\}$-> Nat
- $\mathrm{S}<: \mathrm{T}$
- $\mathrm{T}<: \mathrm{S}$
- equivalent
- unrelated

11 [Advanced Only] (12 points) (Subtyping) Give a (careful and detailed) informal proof of the following lemma about the simply typed lambda-calculus with subtyping (a slight variation on one we saw in the Subtyping chapter of Software Foundations):

Lemma: If $\Gamma \vdash s \in \mathrm{~T}_{1} \rightarrow \mathrm{~T}_{2}$ and s is a value, then there exist $\mathrm{x}, \mathrm{S}_{1}$, and s_{2} such that:

- $s=\backslash x: S_{1} \cdot s_{2}$
- $\Gamma, \mathrm{x}: \mathrm{S}_{1} \vdash \mathrm{~s}_{2} \in \mathrm{~S}_{2}$
- $\mathrm{T}_{1}<: \mathrm{S}_{1}$
- $\mathrm{S}_{2}<: \mathrm{T}_{2}$

For Reference

Formal definitions for Imp

Syntax

```
Inductive aexp : Type := | ANum : nat -> aexp | AId : id -> aexp |
APlus : aexp -> aexp -> aexp | AMinus : aexp -> aexp -> aexp | AMult :
aexp -> aexp -> aexp.
Inductive bexp : Type :=
    | BTrue : bexp
    | BFalse : bexp
    | BEq : aexp -> aexp -> bexp
    | BLe : aexp -> aexp -> bexp
    | BNot : bexp -> bexp
    | BAnd : bexp -> bexp -> bexp.
Inductive com : Type :=
    | CSkip : com
    | CAss : id -> aexp -> com
    | CSeq : com -> com -> com
    | CIf : bexp -> com -> com -> com
    | CWhile : bexp -> com -> com.
Notation "'SKIP'" :=
    CSkip.
Notation "l '::=' a" :=
    (CAss l a) (at level 60).
Notation "c1 ;; c2" :=
    (CSeq c1 c2) (at level 80, right associativity).
Notation "'WHILE' b 'DO' c 'END'" :=
    (CWhile b c) (at level 80, right associativity).
Notation "'IFB' e1 'THEN' e2 'ELSE' e3 'FI'" :=
    (CIf e1 e2 e3) (at level 80, right associativity).
```


Evaluation relation

```
Inductive ceval : com -> state -> state -> Prop :=
    | E_Skip : forall st,
            SKIP / st \\ st
    | E_Ass : forall st a1 n X,
            aeval st a1 = n ->
            (X : := a1) / st \\ (update st X n)
    | E_Seq : forall c1 c2 st st' st',
            c1 / st \\ st' ->
            c2 / st' \\ st', ->
            (c1 ; ; c2) / st \\ st',
    | E_IfTrue : forall st st' b1 c1 c2,
            beval st b1 = true ->
            c1 / st \\ st' ->
            (IFB b1 THEN c1 ELSE c2 FI) / st \\ st'
    | E_IfFalse : forall st st' b1 c1 c2,
            beval st b1 = false ->
            c2 / st \\ st' ->
            (IFB b1 THEN c1 ELSE c2 FI) / st \\ st'
    | E_WhileEnd : forall b1 st c1,
            beval st b1 = false ->
            (WHILE b1 DO c1 END) / st \\ st
        | E_WhileLoop : forall st st' st', b1 c1,
            beval st b1 = true ->
            c1 / st \\ st' ->
            (WHILE b1 DO c1 END) / st' \\ st', ->
            (WHILE b1 DO c1 END) / st \\ st',
```

 where "c1 '/' st '\\' st'" := (ceval c1 st st').
 Program equivalence

```
Definition bequiv (b1 b2 : bexp) : Prop :=
        forall (st:state), beval st b1 = beval st b2.
Definition cequiv (c1 c2 : com) : Prop :=
    forall (st st' : state),
            (c1 / st \\ st') <-> (c2 / st \\ st').
```


Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop := forall st st', c / st
 st' -> P st -> Q st'.

Notation "\{\{ P \}\} c \{\{ Q \}\}" := (hoare_triple P c Q).

Implication on assertions

```
Definition assert_implies (P Q : Assertion) : Prop :=
    forall st, P st -> Q st.
Notation "P ->> Q" := (assert_implies P Q) (at level 80).
```

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules

$$
\begin{aligned}
& \overline{\mathbb{K} \text { assn_sub } \mathrm{X} \text { a } Q \mathbb{Y} \mathrm{X}:=\text { a }\{\mathbb{Z} Q} \quad \text { (hoare_asgn) } \\
& \overline{\{ } P\} \text { SKIP }\{P\} \\
& \left\{\begin{array}{l}
\} \\
\{1
\end{array}\{Q\}\right. \\
& \frac{\{Q\} c 2 \notin R\}}{\{P\} c 1 ; ~ ; ~ c 2 ~\{~ R G} \text { (hoare_seq) } \\
& \{P \wedge b\} c 1\{Q\}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathfrak{d} P \wedge b \mathbb{\}} \mathrm{c}\{P\}}{\{\mathbb{Z} P\} \text { WHILE } \mathrm{b} \text { DO } \mathrm{c} \text { END }\{P A \sim b \mathbb{Z}} \text { (hoare_while) } \\
& \mathbb{\{} P^{\prime} \mathbb{f} \subset\left\{Q^{\prime}\right\} \\
& P \rightarrow P^{\prime} \\
& \frac{Q^{\prime} \rightarrow Q}{\mathbb{K} P \mathcal{F} \subset \mathbb{\{} Q \mathbb{F}} \quad \text { (hoare_consequence) } \\
& \mathfrak{\{} P^{\prime} \mathbb{H} \subset \mathbb{Z} Q \mathbb{Z} \\
& \frac{P \rightarrow P^{\prime}}{\mathbb{K} P \mathbb{G} \subset \mathbb{Z} Q \mathbb{Z}} \quad \text { (hoare_consequence_pre) } \\
& \left.\mathbb{\{} P\} \subset \mathbb{\{} Q^{\prime}\right\} \\
& \frac{Q^{\prime} \rightarrow Q}{\mathfrak{d} P \mathcal{F} \subset \mathfrak{K} Q \mathbb{H}} \quad \text { (hoare_consequence_post) }
\end{aligned}
$$

Decorated programs

1. SKIP is locally consistent if its precondition and postcondition are the same:
```
{{ P }}
SKIP
{{ P }}
```

2. The sequential composition of $c 1$ and $c 2$ is locally consistent (with respect to assertions P and R) if c 1 is locally consistent (with respect to P and Q) and c 2 is locally consistent (with respect to Q and R):
```
{{ P }}
c1;;
{{ Q }}
c2
{{ R }}
```

3. An assignment is locally consistent if its precondition is the appropriate substitution of its postcondition:
```
{{ P [x |-> a] }}
X ::= a
{{ P }}
```

4. A conditional is locally consistent (with respect to assertions P and Q) if the assertions at the top of its "then" and "else" branches are exactly $\mathrm{P} \wedge$ b and $\mathrm{P} / \backslash{ }^{\sim} \mathrm{b}$ and if its "then" branch is locally consistent (with respect to $\mathrm{P} / \backslash \mathrm{b}$ and Q) and its "else" branch is locally consistent (with respect to $\mathrm{P} / \triangle{ }^{\sim} \mathrm{b}$ and Q):
```
{{ P }}
IFB b THEN
    {{ P /\ b }}
    c1
    {{ Q }}
ELSE
    {{ P /\ ~b }}
    c2
    {{ Q }}
FI
{{ Q }}
```

5. A while loop with precondition P is locally consistent if its postcondition is $\mathrm{P} / \triangle \sim \mathrm{b}$ and if the pre- and postconditions of its body are exactly $\mathrm{P} / \backslash \mathrm{b}$ and P :
```
{{ P }}
WHILE b DO
    {{ P /\ b }}
    c1
    {{ P }}
END
{{ P /\ ~b }}
```

6. A pair of assertions separated by ->> is locally consistent if the first implies the second (in all states):
```
{{ P }} ->>
{{ P, }}
```


Small Step Semantics

```
Reserved Notation " t '/, st '==>a' t' " (at level 40, st at level 39).
Inductive astep : state -> aexp -> aexp -> Prop :=
    | AS_Id : forall st i,
        AId i / st ==>a ANum (st i)
    | AS_Plus : forall st n1 n2,
        APlus (ANum n1) (ANum n2) / st ==>a ANum (n1 + n2)
    | AS_Plus1 : forall st a1 a1' a2,
        a1 / st ==>a a1' ->
        (APlus a1 a2) / st ==>a (APlus a1' a2)
    | AS_Plus2 : forall st v1 a2 a2',
        aval v1 ->
        a2 / st ==>a a2' ->
        (APlus v1 a2) / st ==>a (APlus v1 a2')
    | AS_Minus : forall st n1 n2,
        (AMinus (ANum n1) (ANum n2)) / st ==>a (ANum (minus n1 n2))
    | AS_Minus1 : forall st a1 a1' a2,
        a1 / st ==>a a1' ->
        (AMinus a1 a2) / st ==>a (AMinus a1' a2)
    | AS_Minus2 : forall st v1 a2 a2',
        aval v1 ->
        a2 / st ==>a a2' ->
        (AMinus v1 a2) / st ==>a (AMinus v1 a2')
    | AS_Mult : forall st n1 n2,
        (AMult (ANum n1) (ANum n2)) / st ==>a (ANum (mult n1 n2))
    | AS_Mult1 : forall st a1 a1' a2,
        a1 / st ==>a a1' ->
        (AMult a1 a2) / st ==>a (AMult a1' a2)
```

```
    | AS_Mult2 : forall st v1 a2 a2',
    aval v1 ->
    a2 / st ==>a a2' ->
    (AMult v1 a2) / st ==>a (AMult v1 a2')
    where " t '/, st '==>a' t' " := (astep st t t').
Reserved Notation " t '/, st '==>' t' '/' st' "
            (at level 40, st at level 39, t' at level 39).
Inductive cstep : (com * state) -> (com * state) -> Prop :=
    | CS_AssStep : forall st i a a',
        a / st ==>a a' ->
        (i ::= a) / st ==> (i ::= a') / st
    | CS_Ass : forall st i n,
            (i ::= (ANum n)) / st ==> SKIP / (t_update st i n)
    | CS_SeqStep : forall st c1 c1' st' c2,
            c1 / st ==> c1' / st' _>
            (c1 ; ; c2) / st ==> (c1' ; ; c2) / st'
    | CS_SeqFinish : forall st c2,
            (SKIP ;; c2) / st ==> c2 / st
    | CS_IfTrue : forall st c1 c2,
            IFB BTrue THEN c1 ELSE c2 FI / st ==> c1 / st
    | CS_IfFalse : forall st c1 c2,
            IFB BFalse THEN c1 ELSE c2 FI / st ==> c2 / st
    | CS_IfStep : forall st b b' c1 c2,
            b / st ==>b b' ->
                    IFB b THEN c1 ELSE c2 FI / st
            ==> (IFB b' THEN c1 ELSE c2 FI) / st
    | CS_While : forall st b c1,
                    (WHILE b DO c1 END) / st
            ==> (IFB b THEN (c1;; (WHILE b DO c1 END)) ELSE SKIP FI) / st
    where " t '/, st '==>' t' '/' st' " := (cstep (t,st) (t',st')).
```


STLC with booleans

Syntax

T ::= Bool
| T -> T

t : : = x

v ::= true
| t t
| false
| \x:T. t
| \x:T. t
| true
| false
| if t then t else t

Small-step operational semantics

```
        value v2
    (\x:T.t12) v2 ==> [x:=v2]t12
            t1 ==> t1,
        ----------------
        t1 t2 ==> t1' t2
        value v1
        t2 ==> t2,
        ---------------
        (ST_AppAbs)
        v1 t2 ==> v1 t2'
        ------------------------------
        (ST_IfTrue)
    (if true then t1 else t2) ==> t1
    -------------------------------
    (if false then t1 else t2) ==> t2
    t1 ==> t1'
(if t1 then t2 else t3) ==> (if t1, then t2 else t3)
```


Typing

Properties of STLC

Theorem preservation : forall t t' T,
empty $\vdash \mathrm{t} \in \mathrm{T} \quad$->
t ==> t, ->
empty $\vdash \mathrm{t}, \in \mathrm{T}$.

Theorem progress : forall t T,
empty $\vdash \mathrm{t} \in \mathrm{T}$->
value t \/ exists t^{\prime}, $\mathrm{t}==>\mathrm{t}$ '.

STLC with products

Extend the STLC with product types, terms, projections, and pair values:
T : : = ...
| T * T
t : := ...
| (t, t)
| t.fst
| t.snd
v ::= ...
| (v, v)

Small-step operational semantics (added to STLC rules)

```
        t1 ==> t1'
---------------------
(t1,t2) ==> (t1',t2)
        t2 ==> t2'
--------------------
(v1,t2) ==> (v1,t2')
        t1 ==> t1'
------------------
t1.fst ==> t1'.fst
    ----------------
    (v1,v2).fst ==> v1
        t1 ==> t1'
------------------
t1.snd ==> t1'.snd
    -----------------
    (ST_Pair1)
    (ST_Pair2)
    (ST_Fst1)
    (ST_FstPair)
    (ST_Snd1)
    (v1,v2).snd ==> v2
```


Typing (added to STLC rules)

$$
\Gamma \vdash \mathrm{t} 1 \in \mathrm{~T} 1 \quad \Gamma \vdash \mathrm{t} 2 \in \mathrm{~T} 2
$$

$\Gamma \vdash(\mathrm{t} 1, \mathrm{t} 2) \in \mathrm{T} 1 * \mathrm{~T} 2$
$\Gamma \vdash \mathrm{t} 1 . \mathrm{fst} \in \mathrm{T} 11$
$\Gamma \vdash \mathrm{t} 1 \in \mathrm{~T} 11 * \mathrm{~T} 12$

(T_Snd)

Subtyping

Extend the language above with the type Top (terms and values remain unchanged):
T : : = ...
| Top
Add these rules that characterize the subtyping relation:

```
        S <: U U <: T
        --------------- (S_Trans)
        S <: T
        ------
        T <: T
    --------
    S <: Top
S1 <: T1 S2 <: T2
-------------------
    S1 * S2 <: T1 * T2
T1 <: S1 S2 <: T2
------------------- (S_Arrow)
S1 -> S2 <: T1 -> T2
```


Typing (added to STLC with products)

All of the ordinary typing rules, plus:

(T_Sub)

