
CIS 500: Software Foundations Midterm I
October 4, 2016

Directions: This exam booklet contains both the standard and advanced track questions.
Questions with no annotation are for both tracks. Other questions are marked “Standard
Only” or “Advanced Only.” Do not waste time answering questions intended for the other
track.

Mark the box of the track you are following. (If you are following one track but want to
move to the other now, please mark the box for the track you want to be on and write a
note on this page telling us that we should switch you to this track.)

Standard Advanced



1. (9 points) Circle True or False for each statement.

(a) If the term (In 3 [1;2;3]) is the goal of your proof state, using the tactic simpl will simplify
it to True. (The definition of In is given in the appendix.)

Answer: False

(b) In Coq all functions terminate (i.e. they cannot go into an infinite loop on any input).

Answer: True

(c) The proposition False cannot be proved in Coq, no matter what axioms we add.

Answer: False

(d) if H : S (S x) = S y is a current assumption, then inversion H will solve any goal.

Answer: False

(e) The axiom of functional extensionality states that

forall (A B:Type) (f g: A -> B), (exists x : A, f x = g x) -> f = g

Answer: False (exists should be forall)

(f) [] =~ Star re is provable for every re. (The definition of =~ is given in the appendix.)

Answer: True

(g) If we assume s =~ EmptySet in Coq, then we can prove s =~ EmptyStr.

Answer: True

(h) A boolean function f : nat -> bool reflects a property P of numbers (P : nat -> Prop)
exactly when forall (n:nat), (f n = true) <-> P n.

Answer: True

(i) For every property of numbers P : nat -> Prop, we can construct a boolean function
testP : nat -> bool such that testP reflects P.

Answer: False (for example, undecidable properties cannot be reflected as (terminating!)
boolean functions)

Grading scheme: 1 point each.

2. (10 points) Write the type of each of the following Coq expressions, or write “ill-typed” if it
does not have one.

(a) 3 = 4

Answer: Prop
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(b) beq_nat 3 4

Answer: bool

(c) forall (x:nat), beq_nat x x

Answer: ill-typed

(d) fun (n : nat) => ev n

Answer: nat -> Prop

(e) fun n => forall m, leb m n = true

Answer: nat -> Prop

(f) if beq_nat 0 1 then (fun n => plus n 5) else plus 6

Answer: nat -> nat

(g) fun (X:Type) (x:X) => x :: nil

Answer: forall (X:Type) X -> list X

(h) (fun n => plus n) 3

Answer: nat -> nat

(i) fun P => (P \/ False)

Answer: Prop -> Prop

(j) ev_SS

Answer: forall n : nat, ev n -> ev (S (S n))

Grading scheme: 2 points for each correct type, and 0 points for wrong or missing type.

3. [Standard Only] (16 points) For each of the types below, write a Coq expression that has
that type or write “Empty” if there are no such expressions.

(a) forall (X Y : Type), option X -> option Y

Answer: Example: fun X Y (x : option X) => None

(b) nat -> nat -> nat

Answer: Example: fun x y => 0

(c) bool -> Prop

Answer: Example: fun x => if x then True else False

(d) forall (X : Type), (X -> X) -> X

Answer: Empty

(e) 3 <= 2

Answer: Empty
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(f) 1 <= 2

Answer: le S 1 1 (le n 1)

(g) [2] =~ (Char 2)

Answer: MChar 2

(h) [20, 10] =~ (App (Char 20) (Char 10))

Answer: MApp [20] (Char 20) [10] (Char 10) (MChar 20) (MChar 10)

Grading scheme: 2 points for each correct expression, 1 point for partially correct expressions,
and 0 points for wrong or missing expression.

4. (11 points) For each of the following propositions, write “not provable” if it is not provable
(in Coq’s core logic, without additional axioms), “needs induction” if it is provable only using
induction, or “easy” if it is provable without using induction and without additional lemmas.

(a) In 3 [1;2;3;4;5]

Answer: easy

(b) forall s, In 3 ([1;2;3] ++ s)

Answer: easy

(c) forall s, In 3 (s ++ [1;2;3])

Answer: needs induction

(d) exists s, In 3 (s ++ [1;2;3])

Answer: easy

(e) exists (x y : list nat), x ++ y = y ++ x

Answer: easy

(f) forall n, n+5 <= n+6

Answer: needs induction

(g) forall f g, (forall x, f x = g x) -> f = g

Answer: not provable

(h) forall x y, x * y = y * x

Answer: needs induction

(i) forall P : Prop, P \/ ~P

Answer: not provable

(j) forall P : Prop, P -> ~~P

Answer: easy
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(k) forall P : Prop, P

Answer: you’d better hope this is not provable

5. This problem asks you to translate mathematical ideas from English into Coq.

(a) (3 points) In class, we saw how to define the relation In using a Fixpoint (the definition is
repeated in the appendix).

Give an alternative definition of In as an Inductive relation IndIn, such that IndIn x l

holds exactly when In x l holds. Do not use In in your solution.

Inductive IndIn {X:Type} : X -> list X -> Prop :=

Answer:

| IndInHere: forall x l, IndIn x (x:: l)

| IndInThere: forall x y l, IndIn x l -> IndIn x (y:: l).

(b) (4 points) Define an inductive relation that holds exactly when every element of a list appears
at most once—that is, there are no duplicate elements in the list. This time, you may use
the definition of In in your solution.

Inductive Unique {X : Type} : list X -> Prop :=

Answer:

| UniqueNil : Unique []

| UniqueCons : forall x l, ~(In x l) -> Unique l -> Unique (x :: l).

(c) (5 points) Consider the following inductively defined relation Doubles, which holds exactly
when each element in the list is immediately repeated (e.g., Doubles holds for the lists [],
[1;1], [1;1;2;2;1;1], [1;1;1;1], but not for the lists [1] or [1;1;1]).

Inductive Doubles {X:Type} : list X -> Prop :=

| DoublesNil: Doubles []

| DoublesCons: forall x l, Doubles l -> Doubles (x :: x :: l).

Give an alternative definition of Doubles as a Fixpoint DoublesP, such that DoublesP l

holds exactly when Doubles l holds. Do not use Doubles in your solution.

Fixpoint DoublesP {X:Type} (l: list X) : Prop :=

Answer:
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match l with

| [] => True

| [x] => False

| x :: y :: l’ =>

x = y /\ DoublesP l’ end.

(d) (8 points) Give an inductively defined property that specifies whether a regular expression re

is nullable—that is, when it can match the empty string. For example, the regular expressions

EmptyStr

Star (Char 10)

Union (Union (Char 20) EmptyStr) (Char 10)

are all nullable, while

Char 10

App (Char 10) (Star (Char 20))

Union (Char 10) (Char 20)

are not nullable.

Inductive Nullable {X:Type} : reg_exp X -> Prop :=

Answer:

| NEmpty : Nullable EmptyStr

| NApp : forall re1 re2,

Nullable re1 ->

Nullable re2 ->

Nullable (App re1 re2)

| NUnionL : forall re1 re2,

Nullable re1 ->

Nullable (Union re1 re2)

| NUnionR : forall re1 re2,

Nullable re2 ->

Nullable (Union re1 re2)

| NStar : forall re, Nullable (Star re).

6. An alternate way to encode lists in Coq is the dlist (“doubly-ended list”) type, which has a
third constructor corresponding to a “cons at the end” (snoc) operation on regular lists, as shown
below:

Inductive dlist (X:Type) : Type :=

| d_nil : dlist X

| d_cons : X -> dlist X -> dlist X
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| d_snoc : dlist X -> X -> dlist X.

(* Make the type parameter implicit. *)

Arguments d_nil {X}.

Arguments d_cons {X} _ _.

Arguments d_snoc {X} _ _.

We can convert any dlist to a regular list using the following function (the definition of snoc
is given in the references).

Fixpoint to_list {X} (dl: dlist X) : list X :=

match dl with

| d_nil => []

| d_cons x l => x::(to_list l)

| d_snoc l x => snoc (to_list l) x

end.

(a) (2 points) As we saw in the homework with the alternate “binary” encoding of natural num-
bers, there may be multiple dlists that represent the same list. Demonstrate this by giving
definitions of example1 and example2 such that the lemma distinct_dlists_but_same_list
below is provable (there is no need to prove it).

Definition example1 : dlist nat := Possible Answer: d_cons 0 d_nil

Definition example2 : dlist nat := Possible Answer: d_snoc d_nil 0

Lemma distinct_dlists_but_same_list :

example1 <> example2 /\ (to_list example1) = (to_list example2).

(b) (6 points) We can define list operations directly on the dlist representation. Complete the
following function for appending two dlists. (Your function should work by recursion on
l1.)

Fixpoint dapp {X} (l1 l2: dlist X) : dlist X :=

Possible Answers:

match l1 with

| d_nil => l2

| d_cons x l => d_cons x (dapp l l2)

| d_snoc l x => dapp l (d_cons x l2)

end.

or

match l2 with

| d_nil => l1

| d_snoc l x => d_snoc (dapp l1 l) x

| d_cons x l => dapp (d_snoc l1 x) l

end.
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Grading scheme: 2 points for each case of the match. -1 for too complex or otherwise minor
problems.

(c) (6 points) The dapp function from part (b) should satisfy the following correctness lemma
stating that it agrees with the list append operation ++ (whose definition is given in the
appendix).

Lemma dapp_correct : forall (X:Type) (l1 l2:dlist X),

to_list (dapp l1 l2) = (to_list l1) ++ (to_list l2).

Proof.

intros X l1.

induction l1 as [| x l| l x].

Case "d_nil". ...

Case "d_cons". ...

Case "d_snoc". ...

Qed.

• What induction hypothesis is available in the d_cons case of the proof? (Circle one.)

i. to_list (dapp (d_cons x l) l2) = (to_list (d_cons x l)) ++ (to_list l2)

ii. to_list (dapp l l2) = (to_list l) ++ (to_list l2)

iii. forall l2 : dlist X, to_list (dapp l l2) = to_list l ++ to_list l2

iv. forall l2 : dlist X,

to_list (dapp (d_cons x l) l2) = to_list (d_cons x l) ++ to_list l2

Answer: iii

• What induction hypothesis is available in the d_snoc case of the proof? (Circle one.)

i. to_list (dapp (d_snoc l x) l2) = (to_list (d_snoc l x)) ++ (to_list l2)

ii. to_list (dapp l l2) = (to_list l) ++ (to_list l2)

iii. forall l2 : dlist X, to_list (dapp l l2) = to_list l ++ to_list l2

iv. forall l2 : dlist X,

to_list (dapp (d_snoc l x) l2) = to_list (d_snoc l x) ++ to_list l2

Answer: iii

Grading scheme: 2 points per answer

7. [Advanced Only] (16 points) Fill in the indicated cases of a careful informal proof of the
following theorem from Software Foundations:

Theorem: For all strings s, regular expressions re, and characters x, if s =~ re

and In x s, then In x (re chars re).

Your proof may use the following lemma:

Lemma in_app_iff: In a (l++l’) if and only if In a l or In a l’, for all lists
l and l’ and elements a.
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Proof: Proceed by induction on the evidence that s =~ re.

Cases MEmpty, MApp, MUnionL, MUnionR: (Omitted. Do not worry about these cases.)

Case MChar: If the rule used to prove s =~ re is MChar, we know that re is Char x’ and s is the
singleton list [x’]. By definition, re_chars yields the singleton list [x’] when applied to re. But
from the fact that In x s, we know that x = x’, and In x (re_chars re) is immediate.
Case MStar0: If the rule used to prove s =~ re is MStar0, then re has the form Star re’ for
some re’ and s is the empty list. We are also given that x appears in s. But s is empty, so this
cannot be—i.e., this case cannot actually arise.
Case MStarApp: If the rule used to prove s =~ re is MStarApp, then re has the form Star re’ and
s is the concatenation of two lists s1 and s2, such that s1 matches re and s2 matches Star re’.
Moreover, we are given two induction hypotheses:

(1) If x is in s1, then x is in re_chars re’.

(2) If x is in s2, then x is in re_chars (Star re’).

Since x is in s, x is in either s1 or s2 by in_app_iff.

(1) If x is in s1, then by the first IH, x is in re_chars re’, which by definition is the same as
re_chars re.

(2) If x is in s2, then by the second IH, x is in re_chars (Star re’), which is exactly what we
need, since re is precisely Star re’.
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For Reference

Numbers

Inductive nat : Type :=

| O : nat

| S : nat -> nat.

Fixpoint plus (n : nat) (m : nat) : nat :=

match n with

| O => m

| S n’ => S (plus n’ m)

end.

Notation "x + y" := (plus x y)(at level 50, left associativity) : nat_scope.

Fixpoint mult (n : nat) (m : nat) : nat :=

match n with

| 0 => 0

| S n’ => m + (mult n’ m)

end.

Notation "x * y" := (mult x y)(at level 40, left associativity) : nat_scope.

Inductive le : nat -> nat -> Prop :=

| le_n : forall n, le n n

| le_S : forall n m, (le n m) -> (le n (S m)).

Notation "m <= n" := (le m n).

Fixpoint beq_nat (n m : nat) : bool :=

match n, m with

| O, O => true

| S n’, S m’ => beq_nat n’ m’

| _, _ => false

end.

Fixpoint leb (n m : nat) : bool :=

match n with

| O => true

| S n’ =>

match m with

| O => false

| S m’ => leb n’ m’

end

end.

Inductive ev : nat -> Prop :=

| ev_0 : ev 0

| ev_SS : forall n : nat, ev n -> ev (S (S n)).
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Options

Inductive option (X:Type) : Type :=

| Some : X -> option X

| None : option X.

Arguments Some {X} _.

Arguments None {X}.

Lists

Inductive list (X:Type) : Type :=

| nil : list X

| cons : X -> list X -> list X.

Definition snoc (X:Type) (l:list X) (x:X) := app l (cons x nil).

Fixpoint In {A : Type} (x : A) (l : list A) : Prop :=

match l with

| [] => False

| x’ :: l’ => x’ = x \/ In x l’

end.

Fixpoint length (X:Type) (l:list X) : nat :=

match l with

| [] => 0

| h :: t => S (length X t)

end.

Fixpoint index {X : Type} (n : nat)

(l : list X) : option X :=

match l with

| [] => None

| h :: t => if beq_nat n O then Some h else index (pred n) t

end.

Fixpoint app {X : Type} (l1 l2 : list X) : (list X) :=

match l1 with

| [] => l2

| h :: t => h :: (app t l2)

end.

Notation "x ++ y" := (app x y) (at level 60, right associativity).

Fixpoint map {X Y:Type} (f:X->Y) (l:list X) : (list Y) :=

match l with

| [] => []

| h :: t => (f h) :: (map f t)

end.
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Fixpoint filter {X:Type} (test: X->bool) (l:list X) : (list X) :=

match l with

| [] => []

| h :: t => if test h then h :: (filter test t)

else filter test t

end.

Regular Expressions

Inductive reg_exp (T : Type) : Type :=

| EmptySet : reg_exp T

| EmptyStr : reg_exp T

| Char : T -> reg_exp T

| App : reg_exp T -> reg_exp T -> reg_exp T

| Union : reg_exp T -> reg_exp T -> reg_exp T

| Star : reg_exp T -> reg_exp T.

Inductive exp_match {X: Type} : list X -> reg_exp X -> Prop :=

| MEmpty : exp_match [] EmptyStr

| MChar : forall x, exp_match [x] (Char x)

| MApp : forall s1 re1 s2 re2,

exp_match s1 re1 ->

exp_match s2 re2 ->

exp_match (s1 ++ s2) (App re1 re2)

| MUnionL : forall s1 re1 re2,

exp_match s1 re1 ->

exp_match s1 (Union re1 re2)

| MUnionR : forall re1 s2 re2,

exp_match s2 re2 ->

exp_match s2 (Union re1 re2)

| MStar0 : forall re, exp_match [] (Star re)

| MStarApp : forall s1 s2 re,

exp_match s1 re ->

exp_match s2 (Star re) ->

exp_match (s1 ++ s2) (Star re).

Notation "s =~ re" := (exp_match s re) (at level 80).

Fixpoint re_chars {T} (re : reg_exp T) : list T :=

match re with

| EmptySet => []

| EmptyStr => []

| Char x => [x]

| App re1 re2 => re_chars re1 ++ re_chars re2

| Union re1 re2 => re_chars re1 ++ re_chars re2

| Star re => re_chars re

end.
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