CIS 500: Software Foundations

Midterm I

October 4, 2016

Name (printed):
Username (PennKey login id): \qquad

My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this examination.

Signature: \qquad Date: \qquad

Directions: This exam booklet contains both the standard and advanced track questions. Questions with no annotation are for both tracks. Other questions are marked "Standard Only" or "Advanced Only." Do not waste time answering questions intended for the other track.

Mark the box of the track you are following. (If you are following one track but want to move to the other now, please mark the box for the track you want to be on and write a note on this page telling us that we should switch you to this track.)

1. (9 points) Circle True or False for each statement.
(a) If the term (In $3[1 ; 2 ; 3]$) is the goal of your proof state, using the tactic simpl will simplify it to True. (The definition of In is given in the appendix.)

True False
(b) In Coq all functions terminate (i.e. they cannot go into an infinite loop on any input).

True False
(c) The proposition False cannot be proved in Coq, no matter what axioms we add.

True False
(d) if $\mathrm{H}: \mathrm{S}(\mathrm{S} x)=\mathrm{S} y$ is a current assumption, then inversion H will solve any goal.

True False
(e) The axiom of functional extensionality states that

```
forall (A B:Type) (f g: A -> B), (exists x : A, f x = g x) -> f = g
    True False
```

(f) [] $=^{\sim}$ Star re is provable for every re. (The definition of $=\sim$ is given in the appendix.)

True False
(g) If we assume $s=^{\sim}$ EmptySet in Coq, then we can prove $s=^{\sim}$ EmptyStr.

True False
(h) A boolean function f : nat -> bool reflects a property P of numbers (P : nat -> Prop) exactly when forall (n :nat), (f $n=$ true) <-> P n.

True False
(i) For every property of numbers P : nat $->$ Prop, we can construct a boolean function testP : nat $->$ bool such that testP reflects P.

True False
2. (10 points) Write the type of each of the following Coq expressions, or write "ill-typed" if it does not have one.
(a) $3=4$
(b) beq_nat 34
(c) forall (x:nat), beq_nat $\mathrm{x} x$
(d) fun (n : nat) \Rightarrow ev n
(e) fun $\mathrm{n}=>$ forall m , leb $\mathrm{m} \mathrm{n}=$ true
(f) if beq_nat 01 then (fun $n=>$ plus $n 5$) else plus 6
(g) fun (X:Type) (x:X) => x :: nil
(h) (fun n => plus n) 3
(i) fun $P=>(P \backslash / F a l s e)$
(j) ev_SS
3. [Standard Only] (16 points) For each of the types below, write a Coq expression that has that type or write "Empty" if there are no such expressions.
(a) forall (X Y : Type), option X -> option Y
(b) nat -> nat -> nat
(c) bool -> Prop
(d) forall (X : Type), (X $\rightarrow \mathrm{X}$) $\rightarrow \mathrm{X}$
(e) $3<=2$
(f) $1<=2$
(g) $[2]=\sim($ Char 2)
(h) $[20,10]=\sim(\operatorname{App}($ Char 20) $($ Char 10) $)$
4. (11 points) For each of the following propositions, write "not provable" if it is not provable (in Coq's core logic, without additional axioms), "needs induction" if it is provable only using induction, or "easy" if it is provable without using induction and without additional lemmas.
(a) In $3[1 ; 2 ; 3 ; 4 ; 5]$
(b) forall s, In 3 ([1;2;3] ++ s)
(c) forall s, In 3 (s ++ $[1 ; 2 ; 3]$)
(d) exists s , In 3 (s ++ $[1 ; 2 ; 3]$)
(e) exists (x y : list nat), $\mathrm{x}++\mathrm{y}=\mathrm{y}++\mathrm{x}$
(f) forall $n, n+5<=n+6$
(g) forall $f \mathrm{~g}$, (forall $\mathrm{x}, \mathrm{f} \mathrm{x}=\mathrm{g} \mathrm{x}$) $\rightarrow \mathrm{f}=\mathrm{g}$
(h) forall $\mathrm{x} y, \mathrm{x} * \mathrm{y}=\mathrm{y} * \mathrm{x}$
(i) forall P : Prop, $\mathrm{P} \backslash /{ }^{\sim} \mathrm{P}$
(j) forall P : Prop, P -> ~~P
(k) forall P : Prop, P
5. This problem asks you to translate mathematical ideas from English into Coq.
(a) (3 points) In class, we saw how to define the relation In using a Fixpoint (the definition is repeated in the appendix).

Give an alternative definition of In as an Inductive relation IndIn, such that IndIn x 1 holds exactly when In x l holds. Do not use In in your solution.

Inductive IndIn \{X:Type\} : X -> list X -> Prop :=
(b) (4 points) Define an inductive relation that holds exactly when every element of a list appears at most once - that is, there are no duplicate elements in the list. This time, you may use the definition of In in your solution.

Inductive Unique \{X : Type\} : list X -> Prop :=
(c) (5 points) Consider the following inductively defined relation Doubles, which holds exactly when each element in the list is immediately repeated (e.g., Doubles holds for the lists [], $[1 ; 1],[1 ; 1 ; 2 ; 2 ; 1 ; 1],[1 ; 1 ; 1 ; 1]$, but not for the lists [1] or $[1 ; 1 ; 1]$).

Inductive Doubles \{X:Type\} : list X -> Prop :=
| DoublesNil: Doubles []
| DoublesCons: forall x l, Doubles l -> Doubles (x :: x :: l).
Give an alternative definition of Doubles as a Fixpoint DoublesP, such that DoublesP 1 holds exactly when Doubles 1 holds. Do not use Doubles in your solution.

Fixpoint DoublesP \{X:Type\} (l: list X) : Prop :=
(d) (8 points) Give an inductively defined property that specifies whether a regular expression re is nullable - that is, when it can match the empty string. For example, the regular expressions

```
EmptyStr
Star (Char 10)
Union (Union (Char 20) EmptyStr) (Char 10)
```

are all nullable, while

```
Char 10
App (Char 10) (Star (Char 20))
Union (Char 10) (Char 20)
```

are not nullable.
Inductive Nullable \{X:Type\} : reg_exp X -> Prop :=
6. An alternate way to encode lists in Coq is the dlist ("doubly-ended list") type, which has a third constructor corresponding to a "cons at the end" (snoc) operation on regular lists, as shown below:

```
Inductive dlist (X:Type) : Type :=
| d_nil : dlist X
| d_cons : X -> dlist X -> dlist X
| d_snoc : dlist X -> X -> dlist X.
(* Make the type parameter implicit. *)
Arguments d_nil {X}.
Arguments d_cons {X} _ _.
Arguments d_snoc {X} _ _.
```

We can convert any dlist to a regular list using the following function (the definition of snoc is given in the references).

```
Fixpoint to_list {X} (dl: dlist X) : list X :=
match dl with
| d_nil => []
| d_cons x l => x::(to_list l)
| d_snoc l x => snoc (to_list l) x
end.
```

(a) (2 points) As we saw in the homework with the alternate "binary" encoding of natural numbers, there may be multiple dlists that represent the same list. Demonstrate this by giving definitions of example1 and example2 such that the lemma distinct_dlists_but_same_list below is provable (there is no need to prove it).

```
Definition example1 : dlist nat :=
Definition example2 : dlist nat :=
Lemma distinct_dlists_but_same_list :
    example1 <> example2 /\ (to_list example1) = (to_list example2).
```

(b) (6 points) We can define list operations directly on the dlist representation. Complete the following function for appending two dlists. (Your function should work by recursion on 11.)

Fixpoint dapp \{X\} (l1 12: dlist X) : dlist X :=
(c) (6 points) The dapp function from part (b) should satisfy the following correctness lemma stating that it agrees with the list append operation ++ (whose definition is given in the appendix).

Lemma dapp_correct : forall (X:Type) (11 12:dlist X), to_list (dapp l1 12) = (to_list l1) ++ (to_list l2).
Proof.
intros X 11.
induction 11 as $[\mid \mathrm{x}$ l| l x].
Case "d_nil". ...
Case "d_cons". ...
Case "d_snoc". ...
Qed.

- What induction hypothesis is available in the d_cons case of the proof? (Circle one.)
i. to_list (dapp (d_cons x l) 12) = (to_list (d_cons x l)) ++ (to_list 12)
ii. to_list (dapp l l2) = (to_list l) ++ (to_list l2)
iii. forall 12 : dlist X , to_list (dapp l 12) = to_list 1 ++ to_list 12
iv. forall 12 : dlist X ,
to_list (dapp (d_cons x l) 12) = to_list (d_cons x l) ++ to_list 12
- What induction hypothesis is available in the $d_{-} s n o c$ case of the proof? (Circle one.)
i. to_list (dapp (d_snoc l x) 12) = (to_list (d_snoc l x)) ++ (to_list 12)
ii. to_list (dapp l 12) = (to_list l) ++ (to_list 12)
iii. forall 12 : dlist X , to_list (dapp 1 12) = to_list 1 ++ to_list 12
iv. forall 12 : dlist X,
to_list (dapp (d_snoc l x) 12) = to_list (d_snoc l x) ++ to_list 12

7. [Advanced Only] (16 points) Fill in the indicated cases of a careful informal proof of the following theorem from Software Foundations:

Theorem: For all strings s, regular expressions re, and characters x , if $\mathrm{s}=\sim \mathrm{re}$ and $\operatorname{In} \mathrm{x}$ s, then $\operatorname{In} \mathrm{x}$ (re_chars re).

Your proof may use the following lemma:
Lemma in_app_iff: In a (l++1') if and only if In a 1 or In a l', for all lists 1 and l^{\prime} and elements a.

Proof: Proceed by induction on the evidence that s =~ re.
Cases MEmpty, MApp, MUnionL, MUnionR: (Omitted. Do not worry about these cases.)
Case MChar: If the rule used to prove $s=^{\sim}$ re is MChar, we know that re is Char x^{\prime} and s is the singleton list [$\left.\mathrm{x}^{\prime}\right]$. (Fill in the rest of this case and the two cases below...)

Case MStar0:

Case MStarApp:

For Reference

Numbers

```
Inductive nat : Type :=
    | O : nat
    | S : nat -> nat.
Fixpoint plus (n : nat) (m : nat) : nat :=
    match n with
        | O => m
        | S n' => S (plus n' m)
    end.
Notation "x + y" := (plus x y)(at level 50, left associativity) : nat_scope.
Fixpoint mult (n : nat) (m : nat) : nat :=
    match n with
        | 0 => 0
        | S n' => m + (mult n' m)
    end.
Notation "x * y" := (mult x y)(at level 40, left associativity) : nat_scope.
Inductive le : nat -> nat -> Prop :=
    | le_n : forall n, le n n
    | le_S : forall n m, (le n m) -> (le n (S m)).
Notation "m <= n" := (le m n).
Fixpoint beq_nat (n m : nat) : bool :=
    match n, m with
        | O, O => true
        | S n', S m' => beq_nat n' m'
        | _, _ => false
    end.
Fixpoint leb (n m : nat) : bool :=
    match n with
        | O => true
        | S n' =>
            match m with
            | O => false
            | S m' => leb n' m'
            end
        end.
Inductive ev : nat -> Prop :=
| ev_0 : ev 0
| ev_SS : forall n : nat, ev n -> ev (S (S n)).
```


Options

```
Inductive option (X:Type) : Type :=
    | Some : X -> option X
    | None : option X.
Arguments Some {X} _.
Arguments None {X}.
```


Lists

```
Inductive list (X:Type) : Type :=
    | nil : list X
    | cons : X -> list X -> list X.
Definition snoc (X:Type) (l:list X) (x:X) := app l (cons x nil).
Fixpoint In {A : Type} (x : A) (l : list A) : Prop :=
    match l with
    | [] => False
    | x' :: l' => x' = x \/ In x l'
    end.
Fixpoint length (X:Type) (l:list X) : nat :=
    match l with
        | [] => 0
        | h :: t => S (length X t)
    end.
Fixpoint index {X : Type} (n : nat)
            (l : list X) : option X :=
    match l with
        | [] => None
        | h :: t => if beq_nat n O then Some h else index (pred n) t
    end.
Fixpoint app {X : Type} (l1 l2 : list X) : (list X) :=
    match l1 with
    | [] => 12
    | h :: t => h :: (app t l2)
    end.
```

```
Notation "x ++ y" := (app x y) (at level 60, right associativity).
```

Notation "x ++ y" := (app x y) (at level 60, right associativity).
Fixpoint map {X Y:Type} (f:X->Y) (l:list X) : (list Y) :=
Fixpoint map {X Y:Type} (f:X->Y) (l:list X) : (list Y) :=
match l with
match l with
| [] => []
| [] => []
| h :: t => (f h) :: (map f t)
| h :: t => (f h) :: (map f t)
end.

```
    end.
```

```
Fixpoint filter {X:Type} (test: X->bool) (l:list X) : (list X) :=
    match l with
    | [] => []
    | h :: t => if test h then h :: (filter test t)
                                    else filter test t
    end.
```


Regular Expressions

```
Inductive reg_exp (T : Type) : Type :=
| EmptySet : reg_exp T
| EmptyStr : reg_exp T
| Char : T -> reg_exp T
| App : reg_exp T -> reg_exp T -> reg_exp T
| Union : reg_exp T -> reg_exp T -> reg_exp T
| Star : reg_exp T \(\rightarrow\) reg_exp T.
Inductive exp_match \{X: Type\} : list X -> reg_exp X -> Prop :=
| MEmpty : exp_match [] EmptyStr
| MChar : forall x, exp_match [x] (Char x)
| MApp : forall s1 re1 s2 re2,
                                    exp_match s1 re1 ->
                                    exp_match s2 re2 ->
                                    exp_match (s1 ++ s2) (App re1 re2)
| MUnionL : forall s1 re1 re2,
                                    exp_match s1 re1 ->
                                    exp_match s1 (Union re1 re2)
| MUnionR : forall re1 s2 re2,
                    exp_match s2 re2 ->
                            exp_match s2 (Union re1 re2)
| MStar0 : forall re, exp_match [] (Star re)
| MStarApp : forall s1 s2 re,
                                    exp_match s1 re ->
                                    exp_match s2 (Star re) ->
                            exp_match (s1 ++ s2) (Star re).
Notation "s =~ re" := (exp_match s re) (at level 80).
Fixpoint re_chars \{T\} (re : reg_exp T) : list T :=
    match re with
    | EmptySet => []
    | EmptyStr => []
    | Char x => [x]
    | App re1 re2 => re_chars re1 ++ re_chars re2
    | Union re1 re2 => re_chars re1 ++ re_chars re2
    | Star re => re_chars re
    end.
```

