
CIS 500:
SOFTWARE FOUNDATIONS

Lecture 1

Benjamin Pierce Fall 2016

How	do	we	build software?
that	works^

(and	be	confident
that	it	does)

^

Critical	Software
Individual	programs

• Operating	systems
• Network	stacks
• Crypto
• Medical	devices
• Flight	control	systems
• Power	plants
• Home	security
• …

Programming	languages
• Static	type	systems
• Data	abstraction	and	modularity
• Security	controls
• Compiler	correctness

SOFTWARE FOUNDATIONS

Logic

+	Reasoning	about	
individual	programs

+	Reasoning	about	
whole	programming	
languages

LOGICAL FOUNDATIONS

Q: How do we know something is true?
A: We test it out
Q: But that isn’t truth; testing can only give us

evidence. How do we know something is true?
A: We prove it
Q: How do we know that we have a proof?
A: We need to define what it means to be a proof.

A proof is a logical sequence of arguments, starting
from some initial assumptions

Q: How do we know that we have a valid sequence of
arguments? Can any list be a proof?

All humans are mortal
All Greeks are human
Therefore I am a Greek!

A: No, no, no! We need to think about how we
think….

Aristotle
384 – 322 BC

Euclid
~300 BC

First we need a language…
• Gottlob Frege: a German mathematician

who started in geometry but became
interested in logic and foundations of
arithmetic.

• 1879 Published “Begriffsschrift, eine der
arithmetischen nachgebildete Formelsprache
des reinen Denkens” (Concept-Script: A
Formal Language for Pure Thought Modeled
on that of Arithmetic)
– First rigorous treatment of functions and

quantified variables

– ⊢ A, ¬A, ∀x.F(x)
– First notation able to express arbitrarily

complicated logical statements

Gottlob Frege
1848-1925

Images in this & following slides taken from Wikipedia.

Formalization of Arithmetic
• 1884: Die Grundlagen der Arithmetik (The Foundations of Arithmetic)
• 1893: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 1)
• 1903: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 2)
• Frege’s Goals:

– isolate logical principles of inference
– derive laws of arithmetic from first principles
– set mathematics on a solid foundation of logic

• David Hilbert: a German recognized as one of the
most influential mathematicians ever.
– algebra, axiomatization of geometry, physics,…
– 1900: published his "23 Problems"

• Problem #2: Prove that the axioms of arithmetic
are consistent

David Hilbert
1862 – 1943

The plot thickens…

Just as Volume 2 was going to print in 1903,
Frege received a letter…

Bertrand Russell
• Russell’s paradox:

• Frege’s language could derive Russell’s
paradox ⇒ it was inconsistent.

• Frege’s logical system could derive anything.
Oops(!!)

Bertrand Russell
1872 - 1970

1. Set comprehension notation:
{ x | P(x) } “The set of x such that P(x)”

2. Let X be the set { Y | Y ∉ X }.

3. Ask the logical question:
Does X ∈ X hold?

4. Paradox! If X ∈ X then X ∉ X.
If X ∉ X then X ∈ X.

Addendum to Frege’s 1903 Book

“Hardly anything more unfortunate can befall
a scientific writer than to have one of the foundations

of his edifice shaken after the work is finished.
This was the position I was placed in by a letter of
Mr. Bertrand Russell, just when the printing of this

volume was nearing its completion.”

– Frege, 1903

Aftermath of Frege and Russell
• Frege came up with a fix, but it made his logic

trivial…

• 1908: Russell fixed the inconsistency of Frege’s
logic by developing a theory of types.

• 1910, 1912, 1913, (revised 1927):
Principia Mathematica (Whitehead & Russell)
– Goal: axioms and rules from which all

mathematical truths could be derived.
– It was a bit unwieldy…

Whitehead Russell

"From this proposition it will follow,
when arithmetical addition has been defined,
that 1+1=2."
—Volume I, 1st edition, page 379

1920's: Hilbert's Program
A plan to secure the foundations of mathematics:

• Develop a formal system of all mathematics.
– Mathematical statements should be written in a precise formal language
– Mathematical proofs should proceed by well-specified rules

• Prove completeness
– i.e. that all true mathematical

statements can be proved

• Prove consistency
– i.e. that no contradictory

conclusions can be proved

• Prove decidability
– i.e. there should be an algorithm

for determining whether a given
statement has a proof Things were going well, following Russell &

Whitehead, until…

Logic in the 1930s and 1940s
• 1931: Kurt Gödel’s first and second

incompleteness theorems.
– Demonstrated that any consistent formal theory

capable of expressing arithmetic cannot be
complete.

– Write down: "This statement is not provable."
as an arithmetic statement.

• 1936: Genzen proves consistency of arithmetic.
• 1936: Church introduces the l-calculus.
• 1936: Turing introduces Turing machines

– Is there a decision procedure for arithmetic?
– Answer: no, it’s undecidable
– The famous “halting problem”

• only in 1938 did Turing get his Ph.D.

• 1940: Church introduces the simple theory of
types

Alonzo Church
1903 - 1995

Alan Turing
1912 - 1954

Kurt Gödel
1906 - 1978

Gerhard Gentzen
1909 - 1945

Fast Forward…
• 1958 (Haskell Curry) and 1969 (William Howard) observe a

remarkable correspondence:

• 1967 – 1980’s: N.G. de Bruijn runs Automath project
– uses the Curry-Howard correspondence for

computer-verified mathematics

• 1971: Jean-Yves Girard introduces System F
• 1972: Girard introduces Fw
• 1972: Per Marin-Löf introduces intuitionistic type theory
• 1974: John Reynolds independently discovers System F

types ~ propositions

programs ~ proofs

computation ~ simplification

N.G. de Bruijn
1918 - 2012

Basis for modern
type systems:
OCaml, Haskell,
Scala, Java, C#, …

Haskell Curry
1900 – 1982

William Howard
1926 –

… to the Present
• 1984: Coquand and Huet first begin

implementing a new theorem prover “Coq”
• 1985: Coquand introduces the

calculus of constructions
– combines features from intuitionistic type

theory and Fw
• 1989: Coquand and Paulin extend CoC to

the calculus of inductive constructions
– adds “inductive types” as a primitive

• 1992: Coq ported to Xavier Leroy’s OCaml
• 1990’s: up to Coq version 6.2
• 2000-2015: up to Coq version 8.4
• 2016: Coq version 8.5 ← CIS 500

• 2013: Coq receives ACM Software System
Award

Thiery Coquand
1961 –

Gérard Huet
1947 –

http://coq.inria.fr/refman/Reference-Manual002.html

Too many contributors
to list here…

PROGRAMMING FOUNDATIONS

So much for foundations… what about the “software” part?

Building Reliable Software
• Suppose you work at (or run) a software company.

• Suppose, like Frege, you’ve sunk 30+ person-years into developing the
“next big thing”:
– Boeing Dreamliner2 flight controller
– Autonomous vehicle control software for Nissan
– Gene therapy DNA tailoring algorithms
– Super-efficient green-energy power grid controller

• Suppose, like Frege, your company has invested a lot of material
resources that are also at stake.

• How do you avoid getting a letter like the one from Russell?

Or, worse yet, not getting the letter,
with disastrous consequences down the road?

Approaches to Software Reliability
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound type systems
– “Formal” verification

More “formal”: eliminate
with certainty as many problems
as possible.

Less “formal”: Techniques may
miss problems in programs

This isn’t a tradeoff… all of
these methods should be used.

Even the most “formal” argument
can still have holes:
• Did you prove the right thing?
• Do your assumptions match reality?
• Knuth: “Beware of bugs in the above

code; I have only proved it correct, not
tried it.”

Five Interwoven Threads
1. basic tools from logic for making and justifying precise claims about

programs

2. the use of proof assistants to construct rigorous, machine checkable,
logical arguments

3. the idea of functional programming, both as a method of
programming and as a bridge between programming and logic

4. techniques for formal verification of properties of specific programs

5. the use of type systems for establishing well-behavedness guarantees
for all programs in a given language

Can it Scale?
Use of formal methods to verify full-scale software systems is a hot research topic!

• CompCert – fully verified C compiler
Leroy, INRIA

• Vellvm – formalized LLVM IR
Zdancewic, Penn

• Ynot – verified DBMS, web services
Morrisett, Harvard

• Verified Software Toolchain
Appel, Princeton

• Bedrock – web programming, packet filters
Chlipala, MIT

• CertiKOS – certified OS kernel
Shao & Ford, Yale

Vellvm Framework

Transform
C	Source	
Code

Other
Optimizations

LLVM
IR

LLVM
IR Target

LLVM
OCaml	Bindings

PrinterParser

Coq

Syntax

Operational
Semantics

Memory
Model

Type	System
and	SSA

Proof	Techniques	&	Metatheory

Extract

Vellvm Framework

C	Source	
Code

Other
Optimizations

LLVM
IR

LLVM
IR Target

LLVM
OCaml	Bindings

PrinterParser

Coq

Syntax

Operational
Semantics

Memory
Model

Type	System
and	SSA

Proof	Techniques	&	Metatheory

Extract
Verified
Transform

Does it work?

LLVM

Random test-case
generation

{8 other C compilers}

79 bugs:
25 critical

202 bugs
325 bugs in
total

Source
Programs

Finding and Understanding Bugs in C Compilers [Yang et al. PLDI 2011]

Verified Compiler: CompCert [Leroy et al.]
<10 bugs found in unverified front-end component

Regehr’s Group Concludes

The striking thing about our CompCert results is that
the middle-end bugs we found in all other compilers
are absent. As of early 2011, the under-development
version of CompCert is the only compiler we have
tested for which Csmith cannot find wrong-code errors.
This is not for lack of trying: we have devoted about six
CPU-years to the task. The apparent unbreakability of
CompCert supports a strong argument that developing
compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked,
has tangible benefits for compiler users.

• National Science Foundation "Expedition" Project
– $10M over five years
– Penn: Pierce / Weirich / Zdancewic
– Princeton: Appel
– Yale: Shao
– MIT: Chlipala

• Many ways to get involved (especially after CIS 500!)
• See www.deepspec.org

CIS 500
• Foundations

– Functional programming
– Constructive logic
– Logical foundations
– Proof techniques for inductive definitions

• Semantics
– Operational semantics
– Modeling imperative “While” programs
– Hoare logic for reasoning about program correctness

• Type Systems
– Simply typed l-calculus
– Type safety
– Subtyping
– Dependently-typed programming

• Coq interactive theorem prover
– turns doing proofs & logic into programming fun!

COURSE MECHANICS

Administrivia
• Instructor: Benjamin Pierce

Office hours: Tuesdays, 4-5:30
Levine 562

• TAs:
– Kenny Foner

Office hours: Fridays 10-noon

– Antoine Voizard
Office hours: Monday afternoons

• Location: Berger Auditorium
• E-mail: cis500@seas.upenn.edu (goes to all course staff)

• Web site: http://www.seas.upenn.edu/~cis500
• Canvas: https://upenn.instructure.com
• PiazzQ: http://piazza.com/upenn/spring2016/cis500

• Course textbook: Software Foundations
– Electronic edition tailor-made for

this class

Use the version available from the
cis500 course web pages!!

(A new version of each chapter will
generally go live just before class. :-)

• Additional resources:
– Types and Programming Languages

(Pierce, 2002 MIT Press)
– Interactive Theorem Proving and Program

Development
(Bertot and Castéran, 2004 Springer)

– Certified Programming with
Dependent Types
(Chlipala, electronic edition)

Resources

Course Policies
• Prerequisites:

– Significant programming experience
– Mathematical sophistication
– Undergraduate functional programming or compilers class helpful

Grading:
• 24% Homework (~12 weekly assignments)
• 18% Midterm I (in class, probably Oct 4th)

• 18% Midterm 2 (in class, probably Nov. 8th)
• 36% Final (Tuesday, Dec. 20, noon-2PM)
• 4% Class participation

⇒ Lecture attendance is crucial!

“Regular” and “Advanced” tracks are graded separately

“Regular” vs. “Advanced” Tracks
• “Advanced” track:

– More and harder exercises
– More challenging exams
– Covering a superset of the “regular” material

• Everybody starts in the advanced track by default.
• Students who wish to take CIS 500 for WPE I credit (Ph.D.) must

complete the advanced track.
• Students may switch from advanced to regular track at any time.

– Notify the course staff in writing (by e-mail).
– The change is permanent after the first midterm.

• Students wishing to switch (back) to the advanced track:
– Must do so before the first midterm exam.
– Must make up all the advanced exercises (or accept the grade penalty).

• Only students taking the advanced track are eligible for an A+.

Class Participation
• Class attendance is mandatory.

• We will be using “clickers” for
– in-class mini quizzes
– Real-time “polls” during lectures

• TurningPoint clicker use will also be your
attendance record.

• For next time: buy a clicker.

• Any TurningPoint RF clicker will work; see
note on course website.

Homework Policies
• Homework is to be done individually
• Homework must be submitted via Canvas
• Homework that is late is subject to:

– 25% penalty for 1 day late (up to 24 hours after deadline)
– 50% penalty for 2 days late
– 75% penalty for 3 days late

• Homework is due at 11:00am on the due date
• Advanced track students must complete (or try to complete) all non-

optional exercises.
– Missing “advanced” exercises will count against your score.

• Regular track students must complete (or try to complete) all non-
optional exercises except those marked “advanced”.
– Missing “advanced” exercises will not count against your score.
– (But you are welcome to try them!)

TODO for you
• Before next class:

– Register for Piazza (if you are not already registered)
– Try to log in to Canvas
– Install Coq (version 8.5pl2, not 8.4 or 8.6)
– Obtain a clicker
– Start reading: Preface and Basics

• HW1: Exercises in Basics.v
– Due: Tuesday, September 6th at 11:00am
– Available from course web page
– Complete all non-optional exercises

• There are no “advanced” problems for this HW

– Submit to Canvas

COQ

Coq in CIS 500
• We’ll use Coq version 8.5

– Available on CETS systems
– Easy to install on your own machine

• See the web pages at: coq.inria.fr

• Two different user interfaces
– CoqIDE – a standalone GUI / editor
– ProofGeneral – an Emacs-based editing environment

• Course web pages have more information.

Coq’s Full System

Subset Used in CIS 500

To start. By the end of the
semester.

BASICS.V

Getting acquainted with Coq…

