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1 (8 points)

Regular Expressions

Recall the definitions of regular expressions and regular expression matching in Coq. (For reference,
we have included the relevant definitions on page 2 in the appendix.)

One interesting property of a regular expression is its cardinality—i.e., the number of strings that
it matches. For example, here are some regular expressions along with their cardinalities:

EmptySet 0
EmptyStr 1
Char "x" 1
Union (Char "x") (Char "y") 2
Star (Char "x") infinite

Choose the correct cardinality for each of the following regular expressions:

1.1 App (Union (Char "x") (Char "y"))
(Union (Char "z") (Char "w"))

� 0 � 1 � 2 � 3 � 4 � infinite

1.2 App (Char "x") (Char "x")

� 0 � 1 � 2 � 3 � 4 � infinite

1.3 Union (Char "x") (Char "x")

� 0 � 1 � 2 � 3 � 4 � infinite

1.4 Star EmptyStr

� 0 � 1 � 2 � 3 � 4 � infinite

1.5 Star EmptySet

� 0 � 1 � 2 � 3 � 4 � infinite

1.6 Star (Union (Char "x") EmptySet)

� 0 � 1 � 2 � 3 � 4 � infinite

1.7 Star (Star EmptyStr)

� 0 � 1 � 2 � 3 � 4 � infinite

1.8 Star (Star EmptySet)

� 0 � 1 � 2 � 3 � 4 � infinite
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2 (14 points)

Inductively Defined Relations

The following inductively defined predicate classifies regular expressions whose cardinality is nonzero
(i.e., those that match at least one string).

Inductive nonempty {T : Type}: reg_exp T -> Prop :=
| ne_char (c : T) :

nonempty (Char c)
| ne_app (e1 e2 : reg_exp T) :

nonempty e1 -> nonempty e2 -> nonempty (App e1 e2)
| ne_union_l (e1 e2 : reg_exp T) :

nonempty e1 -> nonempty (Union e1 e2)
| ne_union_r (e1 e2 : reg_exp T) :

nonempty e2 -> nonempty (Union e1 e2)
| ne_star (e : reg_exp T) :

nonempty (Star e)
| ne_emptystr : nonempty EmptyStr

.

For example:

nonempty (Char "x")
nonempty (App (Char "x") (Char "x"))
~ nonempty (App (Char "x") EmptySet)
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2.1 The inductively defined predicate contains_char classifies regular expressions that contain
some strings with at least one character in them. That is, expressions that are empty or only
contain the empty string do not satisfy this predicate. For example:

contains_char (Char "x")
contains_char (App (Char "x") (Char "x") )
~ contains_char EmptyStr.
~ contains_char EmptySet
~ contains_char (App (Char "x") EmptySet)

Complete the definition of contains_char.

Inductive contains_char {T : Type}: reg_exp T -> Prop :=

2.2 The inductively defined predicate infinite classifies regular expressions of infinite cardinality
(i.e., ones that match infinitely many strings). For example:

infinite (Star (Char "x" ))
~ infinite (Star EmptyStr)
~ infinite (Star (App EmptySet (Char "x")) )

Complete the definition of infinite. Your solution may refer to nonempty and/or
contains_char.

Inductive infinite {T : Type} : reg_exp T -> Prop :=
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3 (10 points)

Hoare Logic

Each of the following Hoare triples contain a variable c, representing an arbitrary Imp command.
For each triple, check the appropriate box to indicate whether the triple is always valid (valid for
all choices of c), sometimes valid (valid for some, but not all, choices of c), or never valid (invalid
for all choices of c). If you choose sometimes valid, give an example of a command c1 that makes
the triple valid and a command c2 that makes the triple invalid.

3.1 {{ X < Y }}
X := Y;
c

{{ X = Y }}

� Always valid � Sometimes valid � Never valid
c1 =
c2 =

3.2 {{ X = 2 }}
while (0 < X) do

c;
X := X + 1

end
{{ X = 2 }}

� Always valid � Sometimes valid � Never valid
c1 =
c2 =

3.3 {{ True }}
if (X < 10)

then while (X < 10) do c end
else c

end
{{ X > 10 }}

� Always valid � Sometimes valid � Never valid
c1 =
c2 =
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3.4 {{ X = Y + 2 }}
if (Y < X)

then while (0 < Y) do c end
else c

end
{{ Y > X }}

� Always valid � Sometimes valid � Never valid
c1 =
c2 =

3.5 {{ X = Y }}
Y := X + Y;
while (X < Y) do c end

{{ X = Y }}

� Always valid � Sometimes valid � Never valid
c1 =
c2 =
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4 (14 points)

STLC with Nondeterminism

We’ve seen how nondterminism in the form of a havoc command can be added to the Imp language.
In this problem, we’ll consider adding a similar feature to the STLC.

First, we add a new term, havoc, to the syntax of terms. This term has type Nat and can step to
any constant natural number. Here is the fragment of the step relation that pertains to havoc.

Inductive step : tm -> tm -> Prop :=
| ST_Havoc : forall (n : nat),

<{ havoc }> --> <{ n }>

This version of the simply typed lambda calculus with havoc also has let bindings, the fix com-
binator, and basic arithmetic. These features all have the same semantics as they were given in
lecture and homework assignments. The full definition can be found on page 3 of the appendix, for
reference.

Since a single term can now step (and hence also multistep) to many different values, it is interesting
to compare terms according to the sets of final values they can reduce to. We say that a term t1
refines a term t2 if the set of values that t1 reduces to is a subset of the set of values that t2 reduces
to.

For example, the term

1*1

refines the term

havoc+1

because the first reduces (only) to the numeric value 1, while the second term can reduce to any
numeric value except 0. Conversely, a counterexample for the claim “term t1 refines the term t2”
is a value v that t1 reduces to but that t2 cannot reduce to.

Here are several pairs of terms in the simply typed lambda calculus extended with havoc. For each
pair, first answer whether the one on the left refines the one on the right, then answer whether the
one on the right refines the one on the left.
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4.1
havoc 2 * havoc

Does the expression on the left refine the expression on the right?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =

4.2 Does the expression on the right refine the expression on the left?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =

4.3
havoc havoc * havoc

Does the expression on the left refine the expression on the right?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =

4.4 Does the expression on the right refine the expression on the left?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =

4.5
let x := havoc in x * x havoc * havoc

Does the expression on the left refine the expression on the right?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =

4.6 Does the expression on the right refine the expression on the left?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =
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4.7
(\x:Nat,

if x = havoc then 1 else 2)
havoc

(\x:Nat,
if x = havoc then 1 else 2)

1

Does the expression on the left refine the expression on the right?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =

4.8 Does the expression on the right refine the expression on the left?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =

4.9
fix (\f:Nat->Nat,

\x:Nat, if x = 0
then x
else f havoc)

1

0

Does the expression on the left refine the expression on the right?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =

4.10 Does the expression on the right refine the expression on the right?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =

4.11
havoc fix (\f:Nat -> Nat,

\x:Nat, if x = havoc
then x
else f havoc)

1

Does the expression on the left refine the expression on the right?
If not, show a counterexample.
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[] Yes
[] No (Give final value below)

v =

4.12 Does the expression on the right refine the expression on the right?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =

fix (\f:Nat->Nat,
\x:Nat, let y := havoc in

if y = 0
then y
else f x) 0

fix (\f:Nat -> Nat,
\x:Nat, f x)

0

Does the expression on the left refine the expression on the right?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =

4.134.14 Does the expression on the right refine the expression on the right?
If not, show a counterexample.

[] Yes
[] No (Give final value below)

v =
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5 (12 points)

Contextual Equivalence in the STLC

We saw in the Equiv chapter how to define and reason about “behavioral equivalence” of programs
in Imp. Intuitively, two Imp programs are equivalent if they embody the same partial function from
input states to output states. In the STLC, there are no “states,” so, to define equivalence, we can
just compare outputs. For example, the terms (\x:Bool.x) true and (\x:Bool.true) false are
equivalent because they both reduce to the same value, true.

But what should we say about equivalence of terms with function types? For example, (\x:Bool. x)
and (\x:Bool. if x then true else false) are “obviously” equivalent, even though they do not
reduce to the same thing (both are already values). One popular answer to this puzzle is the notion
of contextual equivalence—the idea that two functions should be considered equal if they behave
the same when placed in any larger context.

Formally, we define a term context P to be an incomplete term containing one or more holes, written
[], that are waiting to be filled with a term.

Inductive tctx : Type :=
| P_hole
| P_var : string -> tctx
| P_true : tctx
| P_false : tctx
| P_app : tctx -> tctx -> tctx
| P_abs : string -> ty -> tctx -> tctx
| P_if : tctx -> tctx -> tctx -> tctx.

We’ll write term contexts using the same concrete notations as for ordinary terms, except that,
in formal Coq definitions, we’ll enclose them in [{...}] brackets to tell the parser that they may
contain holes.

We next define a function, fill, that “plugs in” an arbitrary term into the holes in a term context.

Fixpoint fill (t:tm) (P:tctx) : tm :=
match P with
| P_var x => tm_var x
| [{ [] }] => t
| [{ true }] => <{ true }>
| [{ false }] => <{ false }>
| [{ P1 P2 }] => let t1' := fill t P1 in

let t2' := fill t P2 in
<{ t1' t2' }>

| [{ \x:T, P }] => let t' := fill t P in
<{ \x : T, t' }>

| [{ if P1 then P2 else P3 }] =>
let t1' := fill t P1 in
let t2' := fill t P2 in
let t3' := fill t P3 in
<{ if t1' then t2' else t3' }>

end.
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Notice that the term t being plugged into the hole is not required to be closed: it can have free
variables, which can then be captured by variable binders above the hole in the term context P. That
is, hole filling can be thought of as a sort of “non-capture-avoiding substitution.” For instance,

fill <{ x (\y:Bool ,y) }> [{ \x:(Bool ->Bool)->Bool , [] }]

yields the term:

\x:(Bool ->Bool)->Bool , x (\y:Bool ,y)

Finally, we say that terms x and y are contextually equivalent if they can be plugged into any term
context P and produce the same results. Formally:

Definition contextually_equivalent (t1 t2 : tm) : Prop :=
forall (P : tctx) (v : tm),
value v ->
((fill t1 P) -->* v <-> (fill t2 P) -->* v).

Note that this definition does not require that the terms being compared be either well typed (we
are ignoring typing completely) or closed. In particular, understanding whether two terms are
contextually equivalent requires considering how free variables in each might be bound when they
are plugged into a term context.

For instance, these two terms are contextually equivalent

if true then x else y if false then y else x

because, whenever they are plugged into a term context that binds variables x and y, both of them
will reduce to the same value. For example, plugging the first into the term context

(\x:Bool , \y:Bool , []) true false

yields the term

(\x:Bool , \y:Bool , if true then x else y) true false

which reduces to true, while plugging the second term into the same context yields

(\x:Bool , \y:Bool , if false then y else x) true false

which again reduces to true.

11



By contrast, these terms are not contextually equivalent

\y:Bool, y \y:Bool, x

because we can exhibit a distinguishing context for them. A distinguishing context for terms t1
and t2 is a term context P such that fill t1 P -->* v1 and fill t2 P -->* v2, where v1 and
v2 are distinct boolean values. Here is a distinguishing context P for these terms.

(\x:Bool, [] false) true

Filling the hole in P with the first term yields

(\x:Bool , (\y:Bool ,y) false) true

which reduces to false. On the other hand, filling P with the second term yields

(\x:Bool , (\y:Bool ,x) false) true

which reduces to true.

For each of the following, determine if the two given terms are contextually equivalent (CE). If they
are not, give an example of a distinguishing context P.

5.1
if x then true else false if (if x then false else true)

then false
else true

[] CE
[] Not CE (give a distinguishing context P below)

P =

5.2
(\y:Bool, (\x:Bool, y)) (\y:Bool, (\x:Bool, x))

[] CE
[] Not CE (give a distinguishing context P below)

P =

5.3
if x then true else false if x then true else true

[] CE
[] Not CE (give a distinguishing context P below)

P =
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5.4
(\f:Bool->Bool,

(\a:Bool, f a)) x y
x y

[] CE
[] Not CE (give a distinguishing context P below)

P =

5.5
if false then x else true if true then x else false

[] CE
[] Not CE (give a distinguishing context P below)

P =

5.6
(\y:Bool, y) (if x then (\y:Bool, x)

else (\y:Bool, y))

[] CE
[] Not CE (give a distinguishing context P below)

P =
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6 (12 points)

STLC with I/O

Suppose we want to add input and output to the simply typed lambda calculus (with base type
Nat). A straightforward way to do this is to add three new forms of term:

• print n, which adds n to a list of outputs from the program;

• read, which returns the next number from a list that is provided to the program when it
begins executing; and

• t1; t2, which evaluates t1, ignores its result, and returns the result of evaluating t2, thus
forcing all of the side effects (reads and writes) of t1 to occur before those of t2.

Here are a few examples showing how these new forms of terms reduce. Note that the input list is
the first list element of the tuple, and the output list is the second.

(<{ (\x : Nat, \y : Nat, x) read read }>, [5;6;7], [1;2])
-->* (<{ 5 }>, [7], [1;2])

(That is, if the remaining input list contains 5, 6, and 7 and if 2 and 1 have been output, then this
expression reads 5 and 6, yields 5 as its result, and leaves the input list two elements shorter and
the output list unchanged.)

(<{ print 1; print 2; print 3 }>, [], [])
-->* (<{ 3 }> [], [3;2;1])

(That is, printing 1, then 2, then 3, starting from empty input and output lists, yields the result 3
and the output list [3;2;1], in that order.)

(<{ print read }>, [], [] )
-->* (<{ 0 }> [], [0])

(Reading from an empty input list yields 0.)
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Here is the definition of the has_type relation for this language.

Inductive has_type : context -> tm -> ty -> Prop :=
(* pure STLC *)
| T_Var : forall Gamma x T1,

Gamma x = Some T1 ->
Gamma |- x \in T1

| T_Abs : forall Gamma x T1 T2 t1,
(x |-> T2 ; Gamma) |- t1 \in T1 ->

Gamma |- \x:T2, t1 \in (T2 -> T1)
| T_App : forall T1 T2 Gamma t1 t2,

Gamma |- t1 \in (T2 -> T1) ->
Gamma |- t2 \in T2 ->
Gamma |- t1 t2 \in T1

(* numbers *)
| T_Nat : forall Gamma (n : nat),

Gamma |- n \in Nat
(* I/O *)
| T_Read : forall Gamma,

Gamma |- read \in Nat
| T_Print : forall Gamma t,

Gamma |- t \in Nat ->
Gamma |- print t \in Nat

| T_Seq : forall Gamma t1 t2 T1 T2,
Gamma |- t1 \in T1->
Gamma |- t2 \in T2 ->
Gamma |- t1 ; t2 \in T2

where "Gamma '|-' t '\in' T" := (has_type Gamma t T).

And here are the (unsurprising) definitions of values and substitution.

Inductive value : tm -> Prop :=
| value_const : forall (n : nat), value <{ n }>
| value_abs : forall x T e, value <{ \x : T, e }>.

Fixpoint subst (x : string) (s : tm) (t : tm) :=
match t with
| tm_var y => if (eqb_string x y) then s else t
| tm_const n => tm_const n
| <{ t1 t2}> => <{ ({subst x s t1} ) ({subst x s t2}) }>
| <{ \y: T, t1 }> => <{ \y : T, ({ if eqb_string x y then t1 else subst x s t1}) }>
| <{ read }> => <{ read }>
| <{ print t1 }> => <{ print ({subst x s t1}) }>
| <{ t1 ; t2 }> => <{ ({subst x s t1} ); ({subst x s t2}) }>
end

where "'[' x ':=' s ']' t" := (subst x s t) (in custom stlc).
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Your task is to complete the definition of the step relation below. A correct definition will satisfy
the following progress and preservation theorems.

Theorem progress : forall (t : tm)
(input output : list nat)
(T : ty),

empty |- t \in T ->
(value t \/ exists t' input' output',

(t, input, output) --> (t', input', output')).

Theorem preservation : forall (t t' : tm)
(input output input' output' : list nat)
(T : ty),

empty |- t \in T ->
(t,input,output) --> (t',input',output') ->
empty |- t' \in T.

Pay close attention to the provided header.

Inductive step : (tm * list nat * list nat) -> (tm * list nat * list nat) -> Prop :=
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7 (6 points)

Subtyping

For each of the following pairs of types, S and T, select the appropriate description of how they are
ordered in the subtype relation.

7.1 S = (Top -> Top) -> Top
T = Top -> Top -> Top

� S:<T � T<:S � equivalent � unrelated

7.2 S = (Top * Top) -> Top
T = Top -> (Top -> Top)

� S:<T � T<:S � equivalent � unrelated

7.3 S = {x : Bool, y : Top, z : Bool} -> Top
T = {x : Bool, y : Bool} -> Top

� S:<T � T<:S � equivalent � unrelated

7.4 S = Bool * Bool -> Bool
T = Bool -> Bool -> Bool

� S:<T � T<:S � equivalent � unrelated

7.5 S = (Top -> Bool) -> Top
T = (Bool -> Top) -> Bool

� S:<T � T<:S � equivalent � unrelated

7.6 S = {x : Bool, y : Nat} -> {y : Nat, x : Bool}
T = {y : Nat, x : Bool} -> {x : Bool, y : Nat}

� S:<T � T<:S � equivalent � unrelated
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8 (10 points)

Designing a Typed Stack Machine

In this problem your task will be to design a typing relation for the world’s simplest stack machine.

The machine itself consists of a straight-line program—a list of instructions—plus a stack that can
hold both numeric and boolean values.

Inductive stack_element :=
| elt_bool : bool -> stack_element
| elt_nat : nat -> stack_element.

Definition stack := list stack_element.

Inductive instr :=
| instr_push : nat -> instr
| instr_add : instr
| instr_and : instr
| instr_eq : instr.

Definition prog := list instr.

A single step of the machine executes a single instruction, taking a starting stack to an ending stack.

Reserved Notation "i '/' s '-->' s'" (at level 40).

Inductive step : instr -> stack -> stack -> Prop :=
| ST_push : forall s n,

instr_push n / s --> (elt_nat n :: s)
| ST_add : forall s n1 n2,

instr_add / (elt_nat n1 :: elt_nat n2 :: s) --> (elt_nat (n1+n2) :: s)
| ST_and : forall s b1 b2,

instr_and / (elt_bool b1 :: elt_bool b2 :: s) --> (elt_bool (b1&&b2) :: s)
| ST_eq : forall s n1 n2,

instr_eq / (elt_nat n1 :: elt_nat n2 :: s) --> (elt_bool (beq_nat n1 n2) :: s)

where "i / s '-->' s'" := (step i s s').

This is lifted to a multi-step reduction relation that executes one or more instructions and threads
the ending stack from each into the starting stack for the next.

Reserved Notation "p '/' s -->* s'" (at level 40).

Inductive multistep : prog -> stack -> stack -> Prop :=
| multi_refl : forall (s : stack), [] / s -->* s
| multi_step : forall i p (s s_mid s' : stack),

i / s --> s_mid ->
p / s_mid -->* s' ->
(i::p) / s -->* s'

where "p '/' s -->* s'" := (multistep p s s').
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Notice that this machine can get stuck in various situations, when there are not enough operands
on the stack, or the top stack elements do not have the right types. E.g.

Example stepeg0 :
~ exists s',

instr_add / [elt_nat 4] --> s'.

Example stepeg1 :
~ exists s',

instr_add / [elt_nat 4; elt_bool false] --> s'.

To typecheck programs for this machine, we first begin by assigning types to individual stack
elements and to whole stacks.

Inductive ty :=
| ty_Bool
| ty_Nat.

Definition stack_ty := list ty.

Inductive elt_has_type : stack_element -> ty -> Prop :=
| ET_nat : forall n, elt_has_type (elt_nat n) ty_Nat
| ET_bool : forall b, elt_has_type (elt_bool b) ty_Bool.

Reserved Notation "'|-' s '\in*' sty" (at level 40).

Inductive stack_has_type : stack -> stack_ty -> Prop :=
| SHT_nil : |- [] \in* []
| SHT_cons : forall s sty e T,

|- s \in* sty ->
elt_has_type e T ->
|- (e::s) \in* (T::sty)

where "'|-' s '\in*' sty" := (stack_has_type s sty).

Your task is to fill in the details of the following definitions.

8.1 First, complete the following definition of the typing relation for individual instructions. Notice
that it relates an instruction and two types, one describing the stack before the instruction
executes and one for the state after. For example:

Example eg0 :
|- instr_push 4 \in [ty_Nat] --> [ty_Nat; ty_Nat].

Reserved Notation "'|-' i '\in' st --> st'" (at level 40).

Inductive instr_has_type : instr -> stack_ty -> stack_ty -> Prop :=

8.2 Next, use the instruction typing relation to define a similar relation describing how executing
a whole program changes the shape of the stack.
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Example eg1 :
|- [instr_push 4; instr_push 6]

\in [] -->* [ty_Nat; ty_Nat].

Reserved Notation "'|-' p '\in' st '-->*' st'" (at level 40).

Inductive prog_has_type : prog -> stack_ty -> stack_ty -> Prop :=
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9 [Advanced Track Only] (16 points)

Progress and Preservation for the Typed Stack Machine

Next (for those on the advanced track or taking the exam as WPE-I), we will prove correctness of
the stack machine typing relation from your solution to the previous problem.

Feel free to state (and prove!) auxiliary lemmas if you need them.

Write your proofs in good, clear English, stating any induction hypotheses explicitly.

Since the and and eq instructions are very similar to add, you can elide the cases for these instructions
and just give the cases for push and add.

9.1 First, show that well-typed machine states (program plus stack) are not stuck.

Theorem progress : forall i s sty sty',
|- i \in sty --> sty' ->
|- s \in* sty ->
exists s', i / s --> s'.

Proof.

9.2 Next, prove that stepping a single instruction “preserves typing,” in the sense that the type
you assign to the instruction correctly describes the way the instruction transforms the shape
of the stack.

Lemma step_preserves_typing : forall i s sty s' sty',
|- i \in sty --> sty' ->
|- s \in* sty ->
i / s --> s' ->
|- s' \in* sty'.

Proof.

9.3 Finally, show that multistep reduction preserves typing in the same sense.

Theorem multistep_preserves_typing : forall p sty sty',
|- p \in sty -->* sty' ->
forall s s',
|- s \in* sty ->
p / s -->* s' ->
|- s' \in* sty'.

Proof.
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10 [Advanced Track Only] (15 points)

Correctness of factorial in STLC

For this problem, we will be working in a variant of the simply typed lambda-calculus enriched with
numbers and fixed points, summarized on page 6 in the appendix.

Recall the definition of the factorial function as a term in this system:

Definition stlcfact :=
<{fix

(\f:Nat->Nat,
\a:Nat,
if0 a then 1 else (a * (f (pred a))))}>.

To simplify the reasoning in this problem, we make one technical change to the way the system is
defined, replacing the two reduction rules for the “fix” construct with the following “macro rule”

| ST_FixAbsApp : forall f x T1 T1' t1 v2,
value v2 ->
<{ fix (\f:T1->T1', \x:T1, t1) v2 }> -->
<{ [x := v2] ([f := fix (\f:T1->T1', \x:T1, t1)] t1)}>

and adding a clause to the definition of values

| v_fix : forall v1,
value v1 ->
value <{fix v1}>.

so that a term like

fact (2+1)

will reduce to

fact 3

before any reduction steps involving the body of stlcfact take place.

The ST_FixAbsApp rule is not quite as powerful as the two rules it replaces

| ST_Fix1 : forall t1 t1',
t1 --> t1 ' ->
<{ fix t1 }> --> <{ fix t1 ' }>

| ST_FixAbs : forall x T1 t1,
<{ fix (\ x : T1, t1) }> -->
<{ [x := fix \x : T1, t1 ] t1 }>

(it does not support mutually recursive functions, for example), but it is a little simpler to reason
about because it takes larger steps.
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Now, it is intuitively clear that the term stlcfact represents the “real” factorial function that we
defined earlier in the semester in Gallina:

Fixpoint realfact (x:nat) :=
match x with

0 => 1
| S x' => x * (realfact x')
end.

To state this claim rigorously, we can say that an STLC term tf of type Nat->Nat represents a Coq
function f of type nat->nat if applying them to the same input yields the same result.

Definition represents (tf: tm) (f: nat->nat) : Prop :=
forall n,

(tm_app tf (tm_const n)) -->* tm_const (f n).

In particular:

Theorem fact_correct: represents stlcfact realfact.

Write a careful informal proof of this theorem in English. If your proof uses induction, make sure
to state the induction hypothesis explicitly. Feel free to state (and prove!) auxiliary lemmas if this
is useful.

Since this is an informal proof, the <{...}> braces around STLC terms are not needed here (they
are used in the textbook just to avoid confusing the Coq parser).
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For Reference
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Regular Expressions
Inductive reg_exp (T : Type) : Type :=

| EmptySet
| EmptyStr
| Char (t : T)
| App (r1 r2 : reg_exp T)
| Union (r1 r2 : reg_exp T)
| Star (r : reg_exp T).

Reserved Notation "s =~ re" (at level 80).

Inductive exp_match {T} : list T -> reg_exp T -> Prop :=
| MEmpty : [] =~ EmptyStr
| MChar x : [x] =~ (Char x)
| MApp s1 re1 s2 re2

(H1 : s1 =~ re1)
(H2 : s2 =~ re2)

: (s1 ++ s2) =~ (App re1 re2)
| MUnionL s1 re1 re2

(H1 : s1 =~ re1)
: s1 =~ (Union re1 re2)

| MUnionR re1 s2 re2
(H2 : s2 =~ re2)

: s2 =~ (Union re1 re2)
| MStar0 re : [] =~ (Star re)
| MStarApp s1 s2 re

(H1 : s1 =~ re)
(H2 : s2 =~ (Star re))

: (s1 ++ s2) =~ (Star re)
where "s =~ re" := (exp_match s re).
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STLC with let, booleans, fix, and havoc
Inductive ty : Type :=

| Ty_Arrow : ty -> ty -> ty
| Ty_Nat : ty
| Ty_Bool : ty.

Inductive tm : Type :=
(* pure STLC *)
| tm_var : string -> tm
| tm_app : tm -> tm -> tm
| tm_abs : string -> ty -> tm -> tm
(* numbers *)
| tm_const: nat -> tm
| tm_succ : tm -> tm
| tm_pred : tm -> tm
| tm_mult : tm -> tm -> tm
(* let *)
| tm_let : string -> tm -> tm -> tm
(* fix *)
| tm_fix : tm -> tm
(* havoc *)
| tm_havoc : tm
(* bools *)
| tm_tru : tm
| tm_fls : tm
| tm_eq : tm -> tm -> tm
| tm_if : tm -> tm -> tm -> tm.

Inductive value : tm -> Prop :=
| v_abs : forall x T2 t1,

value <{\x:T2, t1}>
| v_nat : forall n : nat,

value <{n}>
| v_tru : value <{ true }>
| v_fls : value <{ false }>

Reserved Notation "'[' x ':=' s ']' t" (in custom stlc at level 20, x constr).

Fixpoint subst (x : string) (s : tm) (t : tm) : tm :=
match t with
(* pure STLC *)
| tm_var y =>

if eqb_string x y then s else t
| <{\y:T, t1}> =>

if eqb_string x y then t else <{\y:T, [x:=s] t1}>
| <{t1 t2}> =>

<{([x:=s] t1) ([x:=s] t2)}>
(* numbers *)
| tm_const _ =>

t
| <{succ t1}> =>
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<{succ [x := s] t1}>
| <{pred t1}> =>

<{pred [x := s] t1}>
| <{t1 * t2}> =>

<{ ([x := s] t1) * ([x := s] t2)}>
| <{ t1 = t2 }> => <{ ( [x := s]t1 ) = ( [x := s]t2 ) }>
(* booleans *)
| <{if t1 then t2 else t3}> =>

<{if [x := s] t1 then [x := s] t2 else [x := s] t3}>
| <{ true }> => <{ true }>
| <{ false }> => <{ false }>
(* let *)
| <{let y := t1 in t2}> =>

<{let y := [x:=s] t1
in ({ if eqb_string x y then t2 else <{ [x:=s] t2 }> }) }>

(* fix *)
| <{ fix t1 }> =>

<{ fix ([x:=s] t1) }>
(* havoc *)
| <{ havoc }> => <{ havoc }>

end

where "'[' x ':=' s ']' t" := (subst x s t) (in custom stlc).

Inductive step : tm -> tm -> Prop :=
(* pure STLC *)
| ST_AppAbs : forall x T2 t1 v2,

value v2 ->
<{(\x:T2, t1) v2}> --> <{ [x:=v2]t1 }>

| ST_App1 : forall t1 t1' t2,
t1 --> t1' ->
<{t1 t2}> --> <{t1' t2}>

| ST_App2 : forall v1 t2 t2',
value v1 ->
t2 --> t2' ->
<{v1 t2}> --> <{v1 t2'}>

(* numbers *)
| ST_Succ : forall t1 t1',

t1 --> t1' ->
<{succ t1}> --> <{succ t1'}>

| ST_SuccNat : forall n : nat,
<{succ n}> --> <{ {S n} }>

| ST_Pred : forall t1 t1',
t1 --> t1' ->
<{pred t1}> --> <{pred t1'}>

| ST_PredNat : forall n:nat,
<{pred n}> --> <{ {n - 1} }>

| ST_Mulconsts : forall n1 n2 : nat,
<{n1 * n2}> --> <{ {n1 * n2} }>

| ST_Mult1 : forall t1 t1' t2,
t1 --> t1' ->
<{t1 * t2}> --> <{t1' * t2}>
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| ST_Mult2 : forall v1 t2 t2',
value v1 ->
t2 --> t2' ->
<{v1 * t2}> --> <{v1 * t2'}>

| ST_Eq1 : forall t1 t1' t2,
t1 --> t1' ->
<{ t1 = t2 }> --> <{ t1' = t2 }>

| ST_Eq2 : forall (n : nat) t2 t2',
t2 --> t2' ->
<{ n = t2 }> --> <{ n = t2' }>

| ST_Eq_true : forall (n: nat),
<{ n = n }> --> <{ true }>

| ST_Eq_false : forall (n m : nat),
n <> m ->
<{ n = m }> --> <{ false }>

(* booleans *)
| ST_If : forall t1 t1' t2 t3,

t1 --> t1' ->
<{if t1 then t2 else t3}> --> <{if t1' then t2 else t3}>

| ST_If_true : forall t2 t3,
<{if true then t2 else t3}> --> t2

| ST_If_false : forall t2 t3,
<{if false then t2 else t3}> --> t3

(* let *)
| ST_Let1 : forall x t1 t1' t2,

t1 --> t1' ->
<{ let x := t1 in t2}> --> <{ let x := t1' in t2 }>

| ST_LetValue : forall x v1 t2,
value v1 ->
<{ let x := v1 in t2 }> --> <{ [x:=v1]t2 }>

(* fix *)
| ST_Fix1 : forall t1 t1',

t1 --> t1' ->
<{ fix t1 }> --> <{ fix t1' }>

| ST_FixAbs : forall x T1 t1,
<{ fix (\ x : T1, t1) }> -->
<{ [x := fix \x : T1, t1 ] t1 }>

(* havoc *)
| ST_Havoc : forall (n : nat),

<{ havoc }> --> <{ n }>

where "t '-->' t'" := (step t t').
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STLC with let, products, sums, and alternate rules for fix
Inductive ty : Type :=

| Ty_Arrow : ty -> ty -> ty
| Ty_Nat : ty.

Inductive tm : Type :=
(* pure STLC *)
| tm_var : string -> tm
| tm_app : tm -> tm -> tm
| tm_abs : string -> ty -> tm -> tm
(* numbers *)
| tm_const: nat -> tm
| tm_succ : tm -> tm
| tm_pred : tm -> tm
| tm_mult : tm -> tm -> tm
| tm_if0 : tm -> tm -> tm -> tm
(* fix *)
| tm_fix : tm -> tm.

Inductive value : tm -> Prop :=
| v_abs : forall x T2 t1,

value <{\x:T2, t1}>
| v_nat : forall n : nat,

value <{n}>
(* NEW: fix applied to something is a value if its argument is *)
| v_fix : forall v1,

value v1 ->
value <{fix v1}>.

Inductive step : tm -> tm -> Prop :=
(* pure STLC *)
| ST_AppAbs : forall x T2 t1 v2,

value v2 ->
<{(\x:T2, t1) v2}> --> <{ [x:=v2]t1 }>

| ST_App1 : forall t1 t1' t2,
t1 --> t1' ->
<{t1 t2}> --> <{t1' t2}>

| ST_App2 : forall v1 t2 t2',
value v1 ->
t2 --> t2' ->
<{v1 t2}> --> <{v1 t2'}>

(* numbers *)
| ST_Succ : forall t1 t1',

t1 --> t1' ->
<{succ t1}> --> <{succ t1'}>

| ST_SuccNat : forall n : nat,
<{succ n}> --> <{ {S n} }>

| ST_Pred : forall t1 t1',
t1 --> t1' ->
<{pred t1}> --> <{pred t1'}>

| ST_PredNat : forall n:nat,
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<{pred n}> --> <{ {n - 1} }>
| ST_Mulconsts : forall n1 n2 : nat,

<{n1 * n2}> --> <{ {n1 * n2} }>
| ST_Mult1 : forall t1 t1' t2,

t1 --> t1' ->
<{t1 * t2}> --> <{t1' * t2}>

| ST_Mult2 : forall v1 t2 t2',
value v1 ->
t2 --> t2' ->
<{v1 * t2}> --> <{v1 * t2'}>

| ST_If0 : forall t1 t1' t2 t3,
t1 --> t1' ->
<{if0 t1 then t2 else t3}> --> <{if0 t1' then t2 else t3}>

| ST_If0_Zero : forall t2 t3,
<{if0 0 then t2 else t3}> --> t2

| ST_If0_Nonzero : forall n t2 t3,
<{if0 {S n} then t2 else t3}> --> t3

(* NEW: macro rule for fix *)
| ST_FixAbsApp : forall f x T1 T1' t1 v2,

value v2 ->
<{ fix (\f:T1->T1', \x:T1, t1) v2 }> -->
<{ [x := v2] ([f := fix (\f:T1->T1', \x:T1, t1)] t1)}>

(No change to typing or substitution rules.)
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