
CIS 500: Software Foundations Midterm II

November 17, 2020

Solutions



1 (15 points)

Suppose we are given a command c and a desired postcondition Q. In general, there may be many
preconditions P that make the Hoare triple {{P}} c {{Q}} valid. But it is a property of Hoare
logic that, among all these, there will be one such P that is weaker than all the others—i.e., such
that P’ ->> P whenever {{P’}} c {{Q}} is valid.

For example, these are all valid triples,

{{ False }} X := X + 1 {{ X=2 }}
{{ X=1 /\ Y=2 }} X := X + 1 {{ X=2 }}
{{ X=1 }} X := X + 1 {{ X=2 }}

but X=1 is the weakest precondition for this command and postcondition.

Complete the following triples with their weakest preconditions.

1.1 {{ P }} X := 4 {{ X * Y = 16 }}

Answer:

P = Y * 4 = 16

1.2 {{ P }} Z := X; X := Y; Y := Z {{ X = n /\ Y = m }}

Answer:

P = X = m /\ Y = n

1.3 {{ P }} while Y >= 0 do Y := Y - X end {{ False }}

Answer:

P = True

1.4 {{ P }} while Y > 0 do X := X + 1; Y := Y - 1 end {{ X >= Y }}

Answer:

P = True

1.5 {{ P }}
C := 0;
while C > 0 do

X := X - 1;
C := C + 2

{{ C = n * 2 }}

Answer:

P = n = 0

1



2 (6 points)

Consider the following Hoare triple containing a while loop. Give a valid loop invariant P for this
while loop that is strong enough to prove the post condition via application of the consequence rule.
We’ve added some “partial decorations” to help you check the conditions that P must satisfy.

{{X = m /\ Y = n}}
DONE := 0;

{{ P }}
while DONE = 0 do

{{ P /\ DONE = 0 }}
if X > Y then

T ::= Y;
Y ::= X;
X ::= T

else
DONE := 1

end
{{ P }}

end
{{ P /\ ~(DONE = 0)}} ->>
{{X = min(m,n) /\ Y = max(m,n)}}

P =

Solution:

(DONE = 0 /\ X = m /\ Y = n)
\/ (~( DONE = 0) /\ X = min(m,n) /\ Y = max(m,n))

Or:

((X = m \/ X = n) /\ (Y = m \/ Y = n)) /\
(DONE = 0 \/ (X = min(m,n) /\ Y = max(m,n))

2



3 (15 points)

In this problem, we will be interested in Imp programs of a particular form: some initialization
steps c1, followed by a while loop with body c2.

c1;
while b do

c2
end

We’ll “partially decorate” these programs with an initial precondition I and a loop invariant P:

{{ I }}
c1;

{{ P }}
while b do

{{ P /\ b }}
c2

{{ P }}
end

{{ P /\ ~b }}

Such a partially decorated program can fail to be valid for two reasons:

(a) the loop invariant can fail to be established by the initialization steps—that is, the triple
{{I}}c1{{P}} can be invalid, and/or

(b) the loop invariant can fail to be preserved by the loop body—that is, the triple {{P/\b}}c2{{P}}
can be invalid.

Below, we give several Imp programs and initial preconditions, and several candidate loop invariants
for each. For each candidate, check Establishment Fails if establishment fails, Preservation Fails if
preservation fails, and Valid Invariant if neither fails. (It is possible that both establishment and
preservation fail; check both boxes in this case.)

3



3.1 {{ Y < X }}
skip;

{{ P }}
while Y <= X do

{{ P /\ Y <= X }}
if X = Y

then Y := Y + 1
else Y := Y + 3

end
{{ P }}

end
{{ P /\ ~(Y <= X)

P = Y < X

� Establishment Fails � Preservation Fails � Valid Invariant

3.2 P = Y < X + 1

� Establishment Fails � Preservation Fails � Valid Invariant

3.3 P = Y < X + 2

� Establishment Fails � Preservation Fails � Valid Invariant

3.4 P = Y < X + 3

� Establishment Fails � Preservation Fails � Valid Invariant

3.5 P = Y < X + 4

� Establishment Fails � Preservation Fails � Valid Invariant

4



3.6 {{ X = n /\ Y = n /\ Z = 0 }}
skip;

{{ P }}
while X > 0

{{ P /\ X > 0 }}
while Y > 0

Z := Z + 1;
Y := Y - 1

end;
X := X - 1
Y := n

{{ P }}
end

{{ P /\ ~ (X > 0) }}

P = Y >= X

� Establishment Fails � Preservation Fails � Valid Invariant

3.7 P = Y <= Z

� Establishment Fails � Preservation Fails � Valid Invariant

3.8 P = Z = n * (n - X)

� Establishment Fails � Preservation Fails � Valid Invariant

3.9 P = Y = n

� Establishment Fails � Preservation Fails � Valid Invariant

3.10 P = Z = n * (n - Y)

� Establishment Fails � Preservation Fails � Valid Invariant

5



{{ even X /\ even Y }}
skip;

{{ P }}
while X > 0 do

{{ P /\ X > 0 }}
Y := Y + 4;
X := X - 2

{{ P }}
end

{{ P /\ ~ (X > 0) }}

3.11 P = even X

� Establishment Fails � Preservation Fails � Valid Invariant

3.12 P = even Y

� Establishment Fails � Preservation Fails � Valid Invariant

3.13 P = exists n, 4 * n = X

� Establishment Fails � Preservation Fails � Valid Invariant

3.14 P = exists n, 4 * n = Y

� Establishment Fails � Preservation Fails � Valid Invariant

3.15 P = Y <= X

� Establishment Fails � Preservation Fails � Valid Invariant

6



4 (16 points)

Each of the following variations on the standard Hoare Logic rules is flawed in some way: it is either
unsound (there are instances of the rule that are not valid Hoare triples) or incomplete (there are
valid Hoare triples that are not provable if we substitute this rule in place of the standard one), or
possibly both.

For instance, the following modified rule for while is incomplete.

{{P /\ b}} c {{P /\ b}} ->
{{P}} while b do c end {{P /\ ~ b}}.

because, if we replace the standard rule for while commands with this one, the following triple is
not provable (just from the Hoare rules, without unfolding hoare_triple):

{{ 2 = 2 }}
while X > 2 || X < 2 do

x := 2
end

{{ x = 2 }}

For each of the following rules, please say whether it is sound or unsound, and whether it is complete
or incomplete. If they are unsound or incomplete, provide a counterexample in the same form as
above. If the rule is both incomplete and unsound, give both counterexamples.

4.1 {{ True }} skip {{ True }}

Sound but incomplete:

{{ x = 3 }} skip {{ x = 3 }}

4.2 {{P}} c1 {{Q /\ b}} ->
{{P}} c2 {{Q /\ ~b}} ->
{{P}} if b then c1 else c2 end {{Q}}.

Sound but incomplete:

{{ X = 0 }}
if X = 0 then Y := 0 else Y := 0 end

{{ Y = 0 /\ X = 0 }}

4.3 {{Q}} X := a {{Q [X |-> a]}}

Incomplete:

{{ X = 0 }}
X := 2

{{ X = 2 }}

and unsound:

{{ X = a /\ a = 2 }}
X := 4

{{ 4 = a /\ a = 2 }}

7



4.4 {{P}} c {{P}} ->
{{P}} while b do c end {{P /\ ~ b}}.

Sound but incomplete:

{{ X = 1 }}
while false do

X := 0
end
{{ X = 1 }}

8



5 (15 points)

Recall the definition of Himp — i.e., Imp extended with havoc, a nondeterministic variable assign-
ment command. The command havoc X assigns an arbitrary number to the variable X, nondeter-
ministically.

Since a given command from a given starting state can now reach many ending states, it is interesting
to compare commands according to the sets of ending states they can produce. We say that
command c refines command c’ if, for every starting state, the set of possible ending states after
running c is a subset of the set of ending states after running c’.

For example, the command

havoc X; X := X * 2

refines the command

havoc X

because the second can terminate with X set to any number whatsoever, while the first can only set
X to even numbers.

A counterexample for the claim “command c refines command c’” consists of a particular starting
state st and a particular ending state st’ such that st =[ c ]=> st’ holds, but st =[ c’ ]=>
st’ does not.

Here are several pairs of HIMP commands. For each pair, answer whether the one on the left refines
the one on the right, or the one on the right refines the one on the left, or both (i.e., the two
commands produce the same sets of possible output states for every input state), or neither.

If you answer that one of them does not refine the other, please provide a counterexample.

5.1
havoc X havoc X;

X := X + 1

(i) Does the command on the left refine the command on the right?
If not, show a counterexample.

[] Yes
[] No (Give st and st' below)

st =
st ' =

Solution : N.

empty_st =[ havoc X ]=> (X !-> 0)

(ii) Does the command on the right refine the command on the left?
If not, show a counterexample.

9



[] Yes
[] No (Give st and st' below)

st =
st ' =

Solution : Y.

5.2
X := 1 havoc X

(i) Does the command on the left refine the command on the right?
If not, show a counterexample.

[] Yes
[] No (Give st and st' below)

st =
st ' =

Solution : Y.

(ii) Does the command on the right refine the command on the left?
If not, show a counterexample.

[] Yes
[] No (Give st and st' below)

st =
st ' =

Solution : N.

empty_st =[ havoc X ]=> (X !-> 42)

5.3
while true do skip end havoc X

(i) Does the command on the left refine the command on the right?
If not, show a counterexample.

[] Yes
[] No (Give st and st' below)

st =
st ' =

Solution : Y

(ii) Does the command on the right refine the command on the left?
If not, show a counterexample.

[] Yes
[] No (Give st and st' below)

st =
st ' =

10



Solution : N.
empty_st =[ havoc X ]=> (X !-> 1; empty_st)

5.4
havoc X havoc Y

(i) Does the command on the left refine the command on the right?
If not, show a counterexample.

[] Yes
[] No (Give st and st' below)

st =
st ' =

Solution : N.
empty_st =[ havoc X ]=> (X !-> 42)

(ii) Does the command on the right refine the command on the left?
If not, show a counterexample.

[] Yes
[] No (Give st and st' below)

st =
st ' =

Solution : N.
empty_st =[ havoc Y ]=> (Y !-> 42)

5.5
while X = 0 do havoc X end if X = 0 then havoc X end

(i) Does the command on the left refine the command on the right?
If not, show a counterexample.

[] Yes
[] No (Give st and st' below)

st =
st ' =

Solution : Y.

(ii) Does the command on the right refine the command on the left?
If not, show a counterexample.

[] Yes
[] No (Give st and st' below)

st =
st ' =

Solution : N. st = empty, st’ = (X=0)

11



6 (12 points)

One of the exercises in the Imp chapter introduced a simple, stack-based language and a compiler
to it from Imp’s arithmetic expressions. We’re going to ignore the compiler in this problem and
focus on the semantics of the little stack language. In fact, we’ll simplify it even further, to just
constants and addition:

Inductive sinstr : Type :=
| SPush (n : nat)
| SPlus.

Fixpoint sinstr_eval (prog : list sinstr) (stack : list nat) : option (list nat) :=
match prog with
| [] => Some stack
| instr :: prog' =>

match instr with
| SPush n => (sinstr_eval prog' (n :: stack))
| SPlus =>

match stack with
| n1 :: n2 :: t =>

(sinstr_eval prog' (n1 + n2 :: t))
| _ => None
end

end
end.

Your job is to fill in the details of two inductively defined relations that express the same behavior:
a big-step evaluation relation and a small-step reduction relation.

6.1 Complete this inductively defined relation for the big-step semantics. For example, the fol-
lowing should be provable using the relation you define:

sinstr_bstep [SPush 1] [2] [1;2].

sinstr_bstep [SPlus; SPlus] [4;2;1] [7].

Inductive sinstr_bstep : list sinstr -> list nat -> list nat -> Prop :=

| Nil_bstep stack :
sinstr_bstep [] stack stack

| Pop_Push_bstep n prog in_stack out_stack :
sinstr_bstep prog (n :: in_stack) out_stack ->
sinstr_bstep (SPush n :: prog) in_stack out_stack

| Pop_Plus_bstep n1 n2 prog in_stack out_stack :
sinstr_bstep prog (n1 + n2 :: in_stack) out_stack ->
sinstr_bstep (SPlus :: prog) (n1 :: n2 :: in_stack) out_stack

.

12



6.2 Complete this inductively defined relation for the small-step semantics. For example, the
following should be provable using the relation you define:

sinstr_sstep [SPush 1] [2] [] [1;2].

sinstr_sstep [SPlus; SPlus] [4;2;1] [SPlus] [6;1].

Inductive sinstr_sstep : list sinstr -> list nat ->
list sinstr -> list nat ->
Prop :=

| Pop_Push_sstep n prog stack :
sinstr_sstep (SPush n :: prog) stack prog (n :: stack)

| Pop_Plus_step prog n1 n2 stack :
sinstr_sstep (SPlus :: prog) (n1 :: n2 :: stack) prog (n1 + n2 :: stack)

.

13



7 [Advanced Track Only] (15 points)

Recall the tiny language of constants and addition from the Smallstep chapter.

Inductive tm : Type :=
| C : nat -> tm
| P : tm -> tm -> tm.

Here is an “indexed” version of the big-step evaluation relation for this language that counts how
many addition operations are required to produce the result.

Reserved Notation " t '==>' n '//' s" (at level 50).

Inductive eval : tm -> nat -> nat -> Prop :=
| E_Const : forall n,

C n ==> n // 0
| E_Plus : forall t1 t2 n1 n2 i1 i2,

t1 ==> n1 // i1 ->
t2 ==> n2 // i2 ->
P t1 t2 ==> (n1 + n2) // (i1 + i2 + 1)

where " t '==>' n // i" := (eval t n i).

For example:

Example eg1: (C 6) ==> 6 // 0.

Example eg2: (P (C 6) (C 4)) ==> 10 // 1.

Example eg3: (P (C 6) (P (C 4) (C 3))) ==> 13 // 2.

We can also capture the idea of counting addition operations in terms of small-step reduction. We
use the same step relation as in the Smallstep chapter.

Reserved Notation " t '-->' t' " (at level 40).

Inductive step : tm -> tm -> Prop :=
| ST_PlusConstConst : forall n1 n2,

P (C n1) (C n2) --> C (n1 + n2)
| ST_Plus1 : forall t1 t1' t2,

t1 --> t1' ->
P t1 t2 --> P t1' t2

| ST_Plus2 : forall n1 t2 t2',
t2 --> t2' ->
P (C n1) t2 --> P (C n1) t2'

where " t '-->' t' " := (step t t').

Lemma nf_same_as_value : forall t,
normal_form step t <-> value t.

Now we enrich the multi-step reduction relation so that it keeps track of a “step counter”. The idea
is that that the “machine state” at any given moment includes both the expression being evaluated

14



and the value of the step counter. Each step that the machine executes increments the step counter
by 1.

Reserved Notation " t '@' i '-->*' t' '@' i' "
(at level 40, t' at level 39, i at level 39, i' at level 39).

Inductive multi_indexed : indexed_relation tm :=
| multi_refl : forall (x : tm) (i : nat),

x @ i -->* x @ i
| multi_step : forall (x y z : tm) (i j : nat),

x --> y ->
y @ i -->* z @ j ->
x @ i -->* z @ (j+1)

where " t '@' i '-->*' t' '@' i' " := (multi_indexed t i t' i').

The step_eval lemma can be extended straightforwardly to record the fact that adding one addition
step to a multi-step reduction increases step counter by one:

Lemma step__eval : forall t t' n i,
t --> t' ->
t' ==> n // i ->
t ==> n // (i+1).

Building on this, we can strengthen the multistep__eval theorem to show that the indexed versions
of the big- and small-step relations count addition operations in the same way. First, we enrich the
normal_form_of relation with step indices, as well as add in some standard definitions from the
original small step semantics:

Definition relation (X : Type) := X -> X -> Prop.
Definition normal_form {X : Type}

(R : relation X) (t : X) : Prop :=
~ exists t', R t t'.

Definition step_normal_form := normal_form step.

Definition normal_form_of (t t' : tm) (i : nat) :=
(t @ 0 -->* t' @ i) /\ step_normal_form t'.

Informally, normal_form_of t t’ i can be read “term t steps to normal form t’ in i steps.” More
precisely, it says, “If we begin stepping from the term t with step counter 0, then when we reach
normal form t’ the final step counter will be i.”

Finally, we can argue that big-step evaluation and small-step reduction not only reach the same
normal form but do it in the same number of steps. Here is the small-step-to-big-step direction of
this claim:

Theorem multistep__eval : forall t t' k,
normal_form_of t t' k ->
exists m, t' = C m /\ t ==> m // k.

Write a careful informal proof of this theorem. If your proof uses induction, make sure to state the
induction hypothesis explicitly at the beginning of each inductive case.

15



Proof.

Unfolding the definition of normal_form_of, we get:
- t @ 0 -->* t' @ k
- step_normal_form t'

Since we know t' is a normal form, lemma nf_same_as_value
tells us that t' has the form C n for some n. If we choose n as
the witness for the existential quantifier "exists m", then it
only remains to show that t ==> n // k.

Proceed by induction on the derivation of t @ 0 -->* t' @ k.

- Case multi_refl:
k = 0
t' = t

Since t' has the form (C n), so does t.
Rule E_Const then gives us t ==> n // 0, as required.

- Case multi_step:
t --> t''
t'' @ 0 -->* t' @ j
k = j+1
IH: t'' ==> n // j.

By lemma step__eval, t ==> n // j+1, as required.
Qed.

16


