
(VIRTUAL) CIS 500:
SOFTWARE FOUNDATIONS

Lecture 1

Benjamin Pierce Fall 2020

SOFTWARE FOUNDATIONS

How do we build software?
that works^

(and be convinced
that it does)

^

Critical Software
Individual programs

• Operating systems
• Network stacks
• Crypto
• Medical devices
• Flight control systems
• Power plants
• Home security
• …

Programming languages
• Compilers
• Static type system
• Data abstraction and modularity

features
• Security controls

SOFTWARE FOUNDATIONS

Logic

+ Reasoning about
individual programs

+ Reasoning about
whole programming
languages

LOGICAL FOUNDATIONS

Q: How do we know something is true?
A: We prove it
Q: How do we know that we have a proof?
A: We need to know what it means for something to be

a proof.
First cut: A proof is a “logical” sequence of
arguments, starting from some initial assumptions

Q: How do we agree on what is a valid sequence of
arguments? Can any sequence be a proof? E.g.

All humans are mortal
All Greeks are human
Therefore I am a Greek!

A: No, no, no! We need to think harder about valid
ways of reasoning...

Aristotle
384 – 322 BC

Euclid
~300 BC

First we need a language…
• Gottlob Frege: a German mathematician

who started in geometry but became
interested in logic and foundations of
arithmetic.

• 1879 Published “Begriffsschrift, eine der
arithmetischen nachgebildete Formelsprache
des reinen Denkens” (Concept-Script: A
Formal Language for Pure Thought Modeled
on that of Arithmetic)
– First rigorous treatment of functions and

quantified variables
– ⊢ A, ¬A, ∀x.F(x)
– First notation able to express arbitrarily

complicated logical statements

Gottlob Frege
1848-1925

Images in this & following slides taken from Wikipedia.

Formalization of Arithmetic
• 1884: Die Grundlagen der Arithmetik (The Foundations of Arithmetic)
• 1893: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 1)
• 1903: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 2)
• Frege’s goals:

– isolate logical principles of inference
– derive laws of arithmetic from first principles
– set mathematics on a solid foundation of logic

The plot thickens…

Just as Volume 2 was going to print in 1903,
Frege received a letter…

Addendum to Frege’s 1903 Book

“Hardly anything more unfortunate can befall
a scientific writer than to have one of the foundations

of his edifice shaken after the work is finished.
This was the position I was placed in by a letter of
Mr. Bertrand Russell, just when the printing of this

volume was nearing its completion.”

– Frege, 1903

Bertrand Russell
• Russell’s paradox:

• Frege’s language could derive Russell’s
paradox ⇒ it was inconsistent.

• Frege’s logical system could derive anything.
(Oops!)

Bertrand Russell
1872 - 1970

1. Set comprehension notation:
{ x | P(x) } “The set of x such that P(x)”

2. Let X be the set (of sets) { Y | Y ∉ Y }.

3. Ask the logical question:
Does X ∈ X hold?

4. Paradox! If X ∈ X then X ∉ X.
If X ∉ X then X ∈ X.

Aftermath of Frege and Russell
• Frege came up with a fix… but it made his

logic trivial :-(

• 1908: Russell fixed the inconsistency of Frege’s
logic by developing a theory of types.

• 1910, 1912, 1913, (revised 1927):
Principia Mathematica (Whitehead & Russell)
– Goal: axioms and rules from which all

mathematical truths could be derived.
– It was a bit unwieldy…

Whitehead Russell

"From this proposition it will follow,
when arithmetical addition has been defined,
that 1+1=2."
—Volume I, 1st edition, page 379

Logic in the 1930s and 1940s
• 1931: Kurt Gödel’s first and second

incompleteness theorems.
– Demonstrated that any consistent formal theory

capable of expressing arithmetic cannot be
complete.

– Write down: "This statement is not provable."
as an arithmetic statement.

• 1936: Genzen proves consistency of arithmetic.
• 1936: Church introduces the l-calculus.
• 1936: Turing introduces Turing machines

– Is there a decision procedure for arithmetic?
– Answer: no, it’s undecidable
– The famous “halting problem”

• N.b.: Only in 1938 did Turing get his Ph.D.

• 1940: Church introduces the simple theory of
types Alonzo Church

1903 - 1995
Alan Turing
1912 - 1954

Kurt Gödel
1906 - 1978

Gerhard Gentzen
1909 - 1945

Fast Forward…
• Two logicians in 1958 (Haskell Curry) and 1969 (William Howard)

observe a remarkable correspondence:

• 1967 – 1980’s: N.G. de Bruijn runs Automath project
– uses the Curry-Howard correspondence for

computer-verified mathematics

• 1971: Jean-Yves Girard introduces System F
• 1972: Girard introduces Fw
• 1972: Per Marin-Löf introduces intuitionistic type theory
• 1974: John Reynolds independently discovers System F

types ~ propositions

programs ~ proofs

computation ~ simplification

N.G. de Bruijn
1918 - 2012

Basis for modern
type systems:
OCaml, Haskell,
Scala, Java, C#, …

Haskell Curry
1900 – 1982

William Howard
1926 –

… to the Present
• 1984: Coquand and Huet first begin

implementing a new theorem prover “Coq”
• 1985: Coquand introduces the

calculus of constructions
– combines features from intuitionistic type

theory and Fw
• 1989: Coquand and Paulin extend CoC to

the calculus of inductive constructions
– adds “inductive types” as a primitive

• 1992: Coq ported to Xavier Leroy’s OCaml
• 1990’s: up to Coq version 6.2
• 2000-2015: up to Coq version 8.4
• 2020: Coq version 8.12 ← CIS 500

• 2013: Coq receives ACM Software System
Award

Thiery Coquand
1961 –

Gérard Huet
1947 –

Too many contributors
to list here…

PROGRAMMING FOUNDATIONS

So much for foundations… what about the “software” part?

(LANGUAGE)

Building Reliable Software
• Suppose you work at (or run) a software company.

• Suppose, like Frege, you’ve sunk 30+ person-years into developing the
“next big thing”:
– Boeing Dreamliner2 flight controller
– Autonomous vehicle control software for Nissan
– Gene therapy DNA tailoring algorithms
– Super-efficient green-energy power grid controller

• Suppose, like Frege, your company has invested a lot of material
resources that are also at stake.

• How do you avoid getting a letter like the one from Russell?

Or, worse yet, not getting the letter,
with disastrous consequences down the road?

Approaches to Software Reliability
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– “lint” tools, static analysis
– Fuzzers, random testing

• Mathematical
– Sound type systems
– Formal verification

More “formal”: eliminate
with certainty as many problems
as possible.

Less “formal”: Lightweight,
inexpensive techniques (that may
miss problems)

This isn’t a tradeoff… all of
these methods should be used.

Even the most “formal” argument
can still have holes:
• Did you prove the right thing?
• Do your assumptions match reality?

• Knuth: “Beware of bugs in the above
code; I have only proved it correct, not
tried it.”

Can formal methods scale?
Use of formal methods to verify full-scale software systems is a hot research topic!

• CompCert – fully verified C compiler
Leroy, INRIA

• Vellvm – formalized LLVM IR
Zdancewic, Penn

• Ynot – verified DBMS, web services
Morrisett, Harvard

• Verified Software Toolchain
Appel, Princeton

• Bedrock – web programming, packet filters
Chlipala, MIT

• CertiKOS – certified OS kernel
Shao & Ford, Yale

Does it work?

LLVM

Random test-case
generation

{8 other C compilers}

79 bugs:
25 critical

202 bugs
325 bugs in
total

Source
Programs

Finding and Understanding Bugs in C Compilers [Yang et al. PLDI 2011]

Verified Compiler: CompCert [Leroy et al.]
<10 bugs found in (at the time unverified) front-end
component

Regehr’s Group Concludes

The striking thing about our CompCert results is that
the middle-end bugs we found in all other compilers
are absent. As of early 2011, the under-development
version of CompCert is the only compiler we have
tested for which Csmith cannot find wrong-code errors.
This is not for lack of trying: we have devoted about six
CPU-years to the task. The apparent unbreakability of
CompCert supports a strong argument that developing
compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked,
has tangible benefits for compiler users.

• National Science Foundation "Expedition" Project
– $10M over five years
– Penn: Pierce / Weirich / Zdancewic
– Princeton: Appel
– Yale: Shao
– MIT: Chlipala

• Many ways to get involved (especially after CIS 500!)
• See www.deepspec.org

CIS 500
• Foundations

– Functional programming
– Constructive logic
– Logical foundations
– Proof techniques for inductive definitions

• Semantics
– Operational semantics
– Modeling imperative “While” programs
– Hoare logic for reasoning about program correctness

• Type Systems
– Simply typed l-calculus
– Type safety
– Subtyping
– Dependently-typed programming

• Coq interactive theorem prover
– turns doing proofs & logic into programming fun!

COURSE MECHANICS

Administrivia
• Instructor: Benjamin Pierce

Office hours: See web page (currently Mondays 1:30-3:30)
Location TBA

• TAs:
– Lucas Silver
– Irene Yoon

• Location: Zoom
• E-mail: cis500@seas.upenn.edu (goes to all course staff)

• Web site: http://www.seas.upenn.edu/~cis500
• Canvas: https://upenn.instructure.com
• Piazza: http://piazza.com/upenn/fall2020/cis500

mailto:cis500@seas.upenn.edu

• Course textbook: Software Foundations,
volumes 1 and 2
– Electronic edition tailor-made for

this class

Use the version available from the
cis500 course web pages!!

(A new version of each chapter will
generally go live just before class. :-)

• Additional resources:
– Types and Programming Languages

(Pierce, 2002 MIT Press)
– Interactive Theorem Proving and Program

Development
(Bertot and Castéran, 2004 Springer)

– Certified Programming with
Dependent Types
(Chlipala, electronic edition)

Resources

How to CIS500
Live

– Live lectures will be as interactive as possible!
– Keep your video on
– Ask lots of questions
– Focus on the class instead of multitasking

Async
– Every lecture will be recorded
– Should be available on Canvas a few hours later
– Feel free to use them (and the textbook) instead of attending live if that

works better for you

Course Policies
• Prerequisites:

– Significant programming experience
– “Mathematical sophistication”
– Undergraduate functional programming or compilers class helpful

Grading:
• 25% Homework (~12 weekly assignments)
• 20% Midterm I (in class, early October)
• 20% Midterm 2 (in class, early November)
• 35% Final (date TBA)

“Regular” vs. “Advanced” Tracks
• “Advanced” track:

– More and harder exercises
– More challenging exams
– Covering a superset of the “regular” material

• Everybody starts in the advanced track by default.
• Students who wish to take CIS 500 for both course credit and WPE I

credit (Ph.D.) must follow the advanced track.
• Students may switch from advanced to regular track at any time.

– Notify the course staff in writing (by e-mail).
– The change is permanent after the first midterm.

• Students wishing to switch (back) to the advanced track:
– Must do so before the first midterm exam.
– Must make up all the advanced exercises (or accept the grade penalty).

• Only students taking the advanced track are eligible for an A+.
• “Regular” and “Advanced” tracks are curved separately

Class Participation

• We will be using Poll Everywhere, an online polling platform, for
– in-class mini quizzes
– real-time “polls” during lectures

• For next time: download the Poll Everywhere app for your
smartphone.

Homework Policies
• Homework must be done individually
• Homework must be submitted via Canvas
• Homework that is late is subject to:

– 25% penalty for 1 day late (up to 24 hours after deadline)
– 50% penalty for 2 days late
– 75% penalty for 3 days late

• Homework is due at 11:30am on the due date
• Advanced track students must complete (or attempt) all non-optional

exercises including those marked “advanced”.
– Missing “advanced” exercises will count against your score.

• Regular track students must complete (or attempt) all non-optional
exercises except those marked “advanced”.
– Missing “advanced” exercises will not count against your score.
– But you are welcome to try them!

WPE-I Policy
• If you wish to take CIS500 for WPE-I (Written Preliminary Exam, part I)

credit toward a CIS PhD degree, you have two choices:
– Final exam only option: WPE-I credit only (no need to be registered for

the course). Passing score for WPE-I credit is determined by the CIS500
instructors (Pierce, Weirich, Zdancewic). Historically, this has been
around a B+ grade on the exam.

– Full course participation option: Must be registered for the course. WPE-I
credit awarded for a weighted average grade of B+ on homework and all
three exams.
• You can take the course P/F and also receive WPE-I credit (following the same

criteria)

TODO (for you)
• Before next class:

– Register for Piazza (if you are not already registered)
– Try to log in to Canvas
– Install Coq (version 8.12)
– Download Poll Everywhere app on your phone
– Start reading: Preface and Basics

• HW1: Exercises in Basics.v
– Due: Tuesday, September 8th at 11:30AM
– Available from course web page
– Complete all non-optional exercises

• There are no “advanced” problems for this HW

– Submit via Canvas

COQ

Coq in CIS 500
• We’ll use Coq version 8.12

– Easy to install on your own machine

• See the web pages at: coq.inria.fr

• Two different user interfaces
– CoqIDE – a standalone GUI / editor
– ProofGeneral – an Emacs-based editing environment

• Course web pages have more information.

Coq’s Full Capabilities

Subset Used in CIS 500

To start. By the end of the
semester.

BASICS.V

Getting acquainted with Coq…

