CIS 500 — Software Foundations
Midterm 1

Answer key

October 11, 2006



Instructions

This is a closed-book exam: you may not use any books or notes.

You have 80 minutes to answer all of the questions. The entire exam is worth 80 points for students
in section 002 and 90 points for students in section 001 (there is one PhD-section-only problem).

Questions vary significantly in difficulty, and the point value of a given question is not always exactly
proportional to its difficulty. Do not spend too much time on any one question.

Partial credit will be given. All correct answers are short. The back side of each page may be used as
a scratch pad.

Good luck!



OCaml

1. (5 points) The forall function takes a predicate p (a one-argument function returning a boolean)
and a list 1; it returns true if p returns true on every element of 1 and false otherwise.

# forall (fun x -> x >= 3) [2;11;4];;
- : bool = false

# forall (fun x -> x >= 3) [3;4;5];;
- : bool = true
(a) What is the type of forall? Answer: (’a — bool) — ’a list — bool

(b) Complete the following definition of forall as a recursive function: Answer:

let rec forall p 1 =
match 1 with
| [1 -> true
| h::t -> (p h) && forall p t

Grading scheme: (a) gets 0/2 for completely wrong type, 1/2 for small mistakes (e.g. not polymorphic
type), 2/2 otherwise. (b) gets 0/3 for completely wrong functions, 1/3 if there is some pattern match-
ing involved, 2/3 for simple mistakes such as base case error and 3/3 for various completely correct
solutions.

2. (5 points) Recall the function fold discussed in class:

# let rec fold £ 1 acc =
match 1 with
[ -> acc
| a::1 -> f a (fold £ 1 acc);;
val fold : (a -> ’b -> ’b) -> ’a list -> ’b -> ’b

Complete the following definition of forall by supplying appropriate arguments to fold:

Answer:

let forall p 1 = fold (fun x acc — (p x) && acc) 1 true

Grading scheme: Roughly one point for right number/type of arguments, one point for the right initial
accumulator, three points for the function:
0: Blank.

1: Major omissions and errors: e.g., omitting f entirely, or wrong f and an integer as initial accu-
mulator.

2: Correct number and types of arguments, but f wrong. Most common:
ltet forall p 1 = fold p 1 true

: f argument has right type, or right body, but two minor errors.

o

: One minor error.
: Perfect.

[T



Untyped lambda-calculus

The following questions are about the untyped lambda calculus. For reference, the definition of this
language appears on page 13 at the end of the exam.

Recall the definitions of the following lambda-terms from the book and/or lecture notes:

/* A dummy "unit value", for forcing thunks */
unit = Ax. x;

/* Standard definition of booleans */
tru = At. A\f. t;

fls = At. Af. f;

not = Ab. b fls tru;

test = Ab. At. Af. b t f unit;

/* Standard definition of pairs */
fst = Ap. p tru;

snd = Ap. p fls;

pair = Ax. Ay. Asel. sel x y;

/* Standard call-by-value fixed point function. */
fix = AMf. (Ax. £ Qy. x xy)) Ox. £ Qy. xxy));

/* Standard definitions of church numerals and arithmetic operations */
cO0 = As. Az. z;

cl = As. A\z. s z;

c2 = As. Az. s (s z);

c3 =As. Az. s (s (s 2));

cd = As. Az. s (s (s (s 2)));

c5 =Xs. Az. s (s (s (s (s 2))));

c6 =As. Az. s (s (s (s (s (s 2)))));

scc = An. As. \z. s (n s z);

iszro = Am. m (Adummy. fls) tru;

zz = pair cO cO;

ss = Ap. pair (snd p) (scc (snd p));
prd = Am. fst (m ss zz);



3. (6 points) Circle the term that each of the following lambda calculus terms steps to, using the single-
step evaluation relation t — t’. If the term is a normal form, circle DOESN'T STEP.

(a) (Ax.x) (Ax. x x) (Ax. x %)

i (Ax. x) (Ax. x x) (Ax. x %)
il. (Ax. x x) (Ax. x x)

i, x'. (Ax. x %)) (Ax. x %)
iv. (Ax. x) (Ax. x x)

v. DOESN'T STEP

Answer: (ii)

(b) (Ax. (Ax.x) (Ax. x x))
i (Ax. Ox.x) (Ax. x %))
ii. (Ax. (Ax. x %))
iii. (Ax. (Ax. %))
iv. (Ax. x) (Ax. x %)
v. DOESN’T STEP

Answer: (v)

() (Ax. (Az. Xx. x z) x) (Ax. x %)
i (Ax. Az, Ax. x z) x) (Ax. x X)
i, Az, XX, (Ax. x x) z) (Ax. x x)
iii. (Az. Ax. x z) (Ax. x %)
iv. (Ax. x (Ax. x %))
v. DOESN’T STEP

Answer: (iii)

Grading scheme: Two points for each.



4. (10 points) Recall the definitions of observational and behavioral equivalence from the lecture notes:

e Two terms s and t are observationally equivalent iff either both are normalizable (i.e., they reach
a normal form after a finite number of evaluation steps) or both are divergent.

e Terms s and t are behaviorally equivalent iff, for every finite sequence of values vy, va, ..., Vv,
(including the empty sequence), the applications

S Vyp Vo ... Vp

and
t vy ve ... vy

are observationally equivalent.

For each of the following pairs of terms, write Yes if the terms are behaviorally equivalent and No if

they are not.

(a) plus co ¢
c3
Answer: Yes
(b) tru
Ax. Ay. (Az. z) x

Answer: Yes

() Ax. Ay. xy
Ax. Ay. x (Az. 2) §y
Answer: No

(d) Ox. xx) (Ax. x %)
Ax. (Ax. x x) (Ax. x x)
Answer: No

() Xx. Ay. xy
AX. X
Answer: Yes

Grading scheme: Two points for each.



5. (12 points) Complete the following definition of a lambda-term equal that implements a recursive
equality function on Church numerals. For example, equal c0 c0 and equal c2 c2 should be behav-
iorally equivalent to tru, while equal cO c1 and equal c5 cO should be behaviorally equivalent to

fls. You may freely use the lambda-terms defined on page 3.

equal =
fix (le.
Am. An.
test (iszro m)
ANSWER:

(Adummy. (iszro n))
(Adummy .
test (not (iszro n))
(Adummy. e (prd m) (prd n))
(Adummy. f1s)))

Grading scheme:

e For getting the three main branches right:

— 2pts for first branch, need to test (iszro n) and return fls
— in second branch, need to test (iszro n) and return (2pts) true or (2pts) (e (prd n) (prd m).

e 2pts for using test correctly (i.e., use of thunks)
e 2pts for understanding how to right a recursive function with fiz (i.e., use e, not equal)

e 2pts for getting everything else right.



Simple types for numbers and booleans

6. (18 points) Recall the following properties of the language of numbers and booleans:

Progress: If -t : T, then either t is a value or else t — t’ for some t’.
Preservation: If 't : Tandt — t/,then 'Ft’ : T.

Uniqueness of types: Each term t has at most one type, and if t has a type, then there is
exactly one derivation of that typing.

Each part of this exercise suggests a different way of changing the language of typed arithmetic and
boolean expressions (see page 11 for reference). Note that these changes are not cumulative: each
part starts from the original language. In each part, for each property, indicate (by circling TRUE or
FALSE) whether the property remains true or becomes false after the suggested change. If a property
becomes false, give a counterexample.

(a)

Suppose we add the following typing axiom:

pred (succ 0) : Bool

Progress: Answer: True.

Preservation: Answer: False. pred (succ 0) has type Bool, but reduces to 0, which does not
have type Bool.

Uniqueness of types: Answer: False. Consider pred (succ 0), which has types Nat and Bool.

Suppose we add the following evaluation axiom:
if t; then to else t3 — t;

Progress: Answer: True

Preservation: Answer: False. Consider if true then 0 else 0, which has type Nat and steps
to a term which has only type Bool.

Uniqueness of types: Answer: True

Suppose we add a new type Foo and two new typing rules:

t1 : Nat
pred t; : Foo

t1 : Foo

succ t; : Nat

Progress: Answer: True

Preservation: Answer: False. Suppose we’re given pred O : Foo. Then pred 0 — 0, but
0 : Nat.

Uniqueness of types: Answer: False. pred 0 : Foo and pred 0: Nat are both derivable.

Grading scheme: For each property:

e -2 for True instead of False or vice versa

e -1 for insufficient detail or not clearly explained counterexample



7. (10 points) [For students in the PhD section only.] Suppose we add to the language of numbers
and booleans two new types, called True and False, plus the following rules. (Note how the two rules
for if allow types to be given to conditionals where the branches are not of the same type.)

true : True

false : False

t1 @ True to 1 Ty t3 T3
if t; then to else t3 : T

t1 : False to : To tg 1 T3
if t; then to else t3 : T3

Grading scheme:

e Part (a) worth 4 points—2 for each type.
e Part (b) worth 6 points.
— First case worth 2 points: binary.

— Second case worth 4 points: no credit for a false statement, partial credit for a true but weaker
statement or missing cases.

(a) What type(s) can be derived for the following term?

if (if true then true else 0) then false else 0
Answer: False and Bool

(b) The inversion lemma tells us, for each syntactic form of terms, how terms of this form can be
given types by the typing rules—intuitively, it allows us to “read the typing relation backwards.”

Here is the inversion lemma from class for the original language of numbers and booleans:
Lemma:

e If true : R, then R = Bool.

e If false : R, then R = Bool.

e If if t; then ty else t3 : R, then t; : Bool, ty : R, and t3 : R.

e If 0 : R, then R = Nat.

e If succ t; : R, then R = Nat and t; : Nat.

e If pred t; : R, then R = Nat and t; : Nat.

e If iszero t; : R, then R = Bool and t; : Nat.

Complete the statements of the following clauses for the enriched language.

Lemma [Inversion]:

e If true : T, then Answer: either T= Bool or T= True.

e Ifif t; then to else t3 : T, then Answer: either (1) t; : Bool and to : Tand t3 : T, or
(2) t1 : True and ty : T and t3 : T3 for some T3, or (3) t1 : False and ty : To for some
T and t3 : T.



Simply typed lambda-calculus

The following questions are about the simply typed lambda-calculus over the base type Nat (not Bool,
as in the book!). For reference, the definition of this language appears on page 14 at the end of the
exam.

. (6 points) Draw a typing derivation for the statement

0 F (Af:Nat—Nat. £ 0) (\g:Nat. pred g) : Nat

Answer:
(f:Nat—Nat) € (f:Nat—Nat) TV T-7 (g:Nat) € (g:Nat) -VAR
f:Nat—Nat - f : Nat—Nat VAR f:Nat—Nat -0 : Nat ERO g:Nat - g @ Nat T-P
- T-App ‘Nat F pred g : Nat 0

f:Nat—Nat - f 0 . Nat T-ABS g:Na pred g . Na T-ABs

@+ (A\f:Nat—Nat. £ 0) : (Nat—Nat)—Nat @+ (\g:Nat. pred g) : Nat—Nat
g p g T-A
-App

O F (A\f:Nat—Nat. £ 0) (A\g:Nat. pred g) :@ Nat

Grading scheme: Up to one point off for each missing rule, misapplied rule, or incorrect judgment in
the internal part of the tree.



9. (18 points) Here are the weakening and permutation lemmas for A_,:

Lemma [Weakening]: fT'Ft : T and x ¢ dom(T"), then T', x: S+t : T. Moreover, the latter
derivation has the same depth as the former.

Lemma [Permutation]: T T'Ft : T and A is a permutation of I, then A Ft : T. Moreover,
the latter derivation has the same depth as the former.

Fill in the missing parts of the proof of the substitution lemma on the following page.

e In the T-Succ case, you need to fill in both the assumptions coming from the case analysis (the
three blank lines at the beginning of the case) and the body of the argument.

e Your wording does not need to exactly match what is in the book or lecture notes, but every
step required in the proof (use of an assumption, application of a lemma, use of the induction
hypothesis, or use of a typing rule) must be mentioned explicitly.

e The cases for application, zero, and predecessor are omitted; you don’t need to worry about these.

Lemma [Substitution]: f T, x:Skt : TandT'ks : S, then ' [x— s]t : T.

Proof: By induction on the depth of a derivation of I', x:S + t : T. Proceed by cases on the final
typing rule used in the derivation.

Case T-VAR: t=2z

with z:T € (T, x:89)
Answer:  There are two sub-cases to consider, depending on whether z is = or another variable. If
z = z, then [z +— slz = s. The required result is then T' & s : S, which is among the assumptions of
the lemma. Otherwise, [z s|z = z, and the desired result is immediate.

Case T-ABs: t = )\y:TQ .t T=Ty—Ty

Ix:S,y:TokFt) 1 Ty
By our conventions on choice of bound variable names, we may assume x # y and y ¢ FV(s).
Answer:  Using permutation on the given subderivation, we obtain I, y:To, z:S+ t1 : T;. Using
weakening on the other given derivation (I' - s : S), we obtain T, y:To - s : S. Now, by the induction
hypothesis, T, y:To b [z — sty : T;. By T-ABs, ' F Ay:Th. [z — 3|ty ¢ Th—Ty, ie. (by the
definition of substitution), Tk [z— s]Ay:Ty. t1 @ To—Ty.

Case T-Succ: t = succ t;

Ix:SkFt;: Nat

T = Nat
Answer: By the induction hypothesis, T b [z +— s|t; : Nat. By T-Succ, 't succ ([z— s|t1) ¢ Nat,
i.e., Tk [z s](succ t1) : Nat.
Grading scheme: 6 points for each part. -1 for a minor omission (e.g., showing the result of a step but
omitting the justification); -2 for omitting a step completely.
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Syntax

nv =

For reference: Boolean and arithmetic expressions

true

false

if t then t else t
0

succ t

pred t

iszero t

true
false
nv

0
succ nv

Bool
Nat

FEvaluation

if true then to else t3 — to
if false then ts else t3 — tj3

ty — t]

if t; then ts else t3 — if t] then ts else t3

ty — t]

succ t; — succ t)
pred 0 — 0
pred (succ nvy) — nvy

t —t]

pred t; — pred t}
iszero 0 — true
iszero (succ nvy) — false

t; —t]

iszero t; — iszero t}

11

terms

constant true
constant false
conditional
constant zero
successor
predecessor
zero test

values
true value
false value
numeric value
numeric values

zero value
successor value

types
type of booleans
type of numbers

(E-IFTRUE)

(E-IFFALSE)

(E-TIr)

(E-Succ)

(E-PREDZERO)

(E-PREDSUCC)
(E-PRED)

(E-ISZEROZERO)

(E-IszEROSUCC)
(E-ISZERO)

continued on next page...



Typing

true : Bool (T-TRUE)
false : Bool (T-FALSE)
t1 : Bool to 1 T tg 1 T
1 2 3 (T-Tr)
if t; then t9 else t3 : T
0 : Nat (T-ZERO)
t; : Nat
e (T-Succ)
succ t; : Nat
t1 : Nat
S (T-PRED)
pred t; : Nat
t1 @ Nat
! (T-ISZERO)

iszero t; : Bool

12



Ax.t

FEvaluation

For reference: Untyped lambda calculus

terms
variable
abstraction
application

values
abstraction value

ti—t
! ! (E-ApP1)
t1 to — t; to
ty — t
2—2, (E-ApPP2)
vy to — V1 Ty
(Ax.t12) Vo — [x — Va]tio (E-APPABS)
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For reference: Simply typed lambda-calculus with numbers

Syntaz
t =
X
Mx:T.t
tt
0
succ t
pred t
V =
Ax:T.t
nv
nv =
0
succ nv
T pr—
Nat
T—T
Fvaluation

t1—>t/1

t1 to — t] to

ty — th

vy to — vy t/2
(Ax:Tq.t12) Vo — [Xx — voltio

tp — t)

succ t; — succ t]
pred 0 — O
pred (succ nvy) — nvy

t; — t)

pred t; — pred t)

14

terms
variable
abstraction
application
constant zero
successor
predecessor

values
abstraction value
numeric value
numeric values

zero value
successor value

types
type of numbers
type of functions

(E-App1)

(E-AppP2)

(E-APPABS)

(E-Succ)

(E-PREDZERO)

(E-PREDSUCC)

(E-PRED)

continued on next page...



Typing

x:Tel
IkFx: T

F, x:T1 Ftg 1 Ty

I'FAx:T1.tg : T1—To

I'Fty @ T11—Tio 'ty

'ty to @ Tyo
'FO: Nat

I'F+t; : Nat
I'F succ t; : Nat

I'F+t; : Nat
' pred t; : Nat

15

(T-VAR)

(T-ABS)

(T-App)

(T-ZERO)

(T-Succ)

(T-PRED)



