CIS 500 — Software Foundations
Midterm 1

Answer key

February 18, 2009

1. (5 points) Consider the following Coq function:

Fixpoint concatMap (X Y : Set) (f : X — list Y) (1 : list X)
{struct 1} : list Y :=
match 1 with

| nil => nil
| h :: t == (£ h) ++ (concatMap _ _ f t)
end.

(a) What is the type of concatMap? (L.e., what does Check concatMap print?)
Answer: concatMap : forall XY : Set, (X — list Y) — list X — 1list Y
(b) What does

Eval simpl in (concatMap _ _ (fun x => x) [[1,2],[3,4]1]1).
print?
Answer: = [1, 2, 3, 4] : 1list nat

(¢) What does

Eval simpl in (concatMap _ _ (fun x => [x+1,x+2]) ([1,2])).
print?
Answer: = [2, 3, 3, 4] : 1list nat

Grading scheme: -2 for each incorrect part
2. (5 points)

(a) Fill in the definition of the Coq function elem below.

Given a type X, an equality-testing function eq for X, an element e of type X, and a list 1
of type list X, the expression elem X eq e 1 returns true if and only an element eg-equal
to e appears in the list. For example, elem nat beq_nat 2 [1,2,3] yields true (because
beq_nat 2 2 = true) while elem nat beq_nat 5 [1,2,3] yields false.

Fixpoint elem (X : Set) (eq : X — X — bool) (e : X) (1 : list X)
{struct 1} : bool :=

Answer:

match 1 with

| nil => false
| h :: t = orb (eq e h) (elem _ eq e t)
end.

Grading scheme: -1 or -2 for various errors (hardly anyone missed this)



(b) Why do we need to pass an equality-testing function eq as an argument to elem instead of just
using = to test for equality?

Answer: = yields a proposition, not a boolean

Grading scheme: -2 for failing to say something close to “= yields a proposition, not a boolean”.
Note that “because = is not polymorphic” (or words to that effect) is incorrect: = is polymorphic.

3. (6 points) Fill in the definition of the Coq function nub below.

Given a type X, an equality function eq for X, and a list 1 of type list X, the expression nub X eq 1
yields a list that retains only the last copy of each element in the input list. For example,
nub nat beq_nat [1,2,1,3,2,2,4] yields [1,3,2,4].

Fixpoint nub (X : Set) (eq : X — X — bool) (1 : list X)
{struct 1} : list X :

Answer:

match 1 with
| nil => nil
| h :: t => if elem _ eq h t then nub _ eq t
else h :: (nub _ eq t)
end.

Grading scheme: -1 to -5 for various errors (few people missed this question,).
4. (5 points)

(a) Briefly explain the use and behavior of the apply tactic.

Answer: The apply tactic is used with a hypothesis from the current conlext or a previously
defined theorem. If the conclusion of that hypothesis or theorem matches the current goal, it is
eliminated and new subgoals are generated for each premise of the applied theorem. In this way,
apply facilitates “backwards” reasoning.

(b) Briefly explain the use and behavior of the apply ... in ... tactic.

Answer: apply H1 in H2 may be used when H2 is a hypothesis in the current context. H1 should be
another hypothesis or a previously defined theorem, and a premise of H1 must match H2. Using the
tactic transforms H2 into the conclusion of H1, and new subgoals are generated for each additional
premise of H1. apply ... in ... facilitates forward reasoning.

Grading scheme:  There was significant variation in this problem. Many errors other than the
ones mentioned here are individually indicated. Common errors include: -1 point for not being
general enough (suggesting apply/apply in only work when the applied hypothesis has exactly one
premise); -2 points for saying that apply H1 in H2 provides n new assumptions where H1 has the
form H2 — P1 — P2 ... — Pn; -1 point for saying apply...in... can be used to modify both
assumptions and the goal.

5. (6 points) Recall the Coq function repeat:

Fixpoint repeat (X : Set) (n : X) (count : nat) {struct count} : list X :=
match count with

| 0 => nil
| S count’ => cons n (repeat _ n count’)
end.

Consider the following partial proof:



Lemma repeat_injective : forall (X : Set) (x : X) (n m : nat),
repeat _ X n = repeat _ x m —
n =m.
Proof.
intros X x n m eq. induction n as [|n’].
Case "n = 0". destruct m as [m’].

SCase "'m = 0". reflexivity.
SCase "'m = S m’". inversion eq.
Case "'m = S n’". destruct m as [|m’].

SCase "m = 0". inversion eq.
SCase "'m = S m’".
assert (n’” =m’) as H.
SSCase "Proof of assertion".

Here is what the “goals” display looks like after Coq has processed this much of the proof:

2 subgoals
SSCase := "Proof of assertion" : String.string
SCase := "m = S m’" : String.string
Case := "n =S n’" : String.string
X : Set
x : X
n’ : nat
m’ : nat
eq : repeat X x (S n’) = repeat X x (Sm’)
IHn’ : repeat X x n’ = repeat X x (Sm’) — n’ =S mw’
n’ =m’

subgoal 2 is:
Sn’ =S’

This proof attempt is not going to succeed. Briefly explain why and say how it can be fixed. (Do not
write the repaired proof in detail—just say briefly what needs to be changed to make it work.)

Answer: Because the induction hypothesis is insufficiently general. It gives us a fact involving one
particular m, but to finish the last step of the proof we need to know something about a different m. To
fix it, either use generalize dependent m before induction or do not intros m and eq to begin with.

Grading scheme: 3 points for identifying the problem, and 3 for explaining out to fix it. -2 points for
not mentioning that the problem involves the IH. -1 point for being vague about nature of the problem
(at the least, it should be made clear that the IH is too specific).

. (5 points) Suppose we make the following inductive definition:

Inductive foo (X : Set) (Y : Set) : Set :=
| fool : X — foo X Y
| foo2 : Y — foo X Y
| foo3 : foo X Y — foo X Y.

Fill in the blanks to complete the induction principle that will be generated by Cogq.

foo_ind
: forall XY : Set) (P : foo X Y — Prop),

(forall x : X, ) —




(forall y : Y, ) —

( ) —

Answer:

foo_ind
: forall XY : Set) (P : foo X Y — Prop),
(forall x : X, P (fool X Y x)) —
(forall y : Y, P (foo2 XY y)) —
(forall f1 : foo X Y, P f1 — P (foo3 X Y f1)) —
forall f2 : foo X Y, P f2

Grading scheme: -1 point for missing forgetting the type arguments to foo’s constructors. -2 points per
line for other significant errors.

. (6 points)

Consider the following induction principle:

bar_ind
: forall P : bar — Prop,
(forall n : nat, P (barl n)) —
(forall b : bar, P b — P (bar2 b)) —
(forall (b : bool) (b® : bar), P b® — P (bar3 b b)) —
forall b : bar, P b

Write out the corresponding inductive set definition.

Inductive bar : Set :=

| barl :

| bar2 :

| bar3 :

Answer:

Inductive bar : Set :=
| barl : nat — bar
| bar2 : bar — bar
| bar3 : bool — bar — bar.

Grading scheme: Binary grading, 2pts per part.
. (6 points) Suppose we give Coq the following definition:

Inductive R : nat — list nat — Prop :=
| ¢c1 : RO []
| c2 : forallnl, Rnl —-— R (Sn) (n :: 1)
| ¢3 : forallnl, R(Sn) 1 — Rn 1.

Which of the following propositions are provable? (Write yes or no next to each one.)

(a) R 2 [1,0] Answer: Yes



10.

11.

12.

(b)y R 1 [1,2,1,0] Answer: Yes
(c) R 6 [3,2,1,0] Answer: No

Grading scheme: Binary grading, 2pts per part.

(6 points) The following inductively defined proposition...

Inductive appears_in (X:Set) (a:X) : list X — Prop :=
| ai_here : forall 1, appears_in X a (a::1)
| ai_later : forall b 1, appears_in X a 1 — appears_in X a (b::1).
...gives us a precise way of saying that a value a appears at least once as a member of a list 1.

Use appears_in to complete the following definition of the proposition no_repeats X 1, which should
be provable exactly when 1 is a list (with elements of type X) where every member is different from
every other. For example, no_repeats nat [1,2,3,4] and no_repeats bool [] should be provable,
while no_repeats nat [1,2,1] and no_repeats bool [true,true] should not be.

Inductive no_repeats (X:Set) : list X — Prop :=

Answer:
| nr_nil : no_repeats X nil
| nr_cons : forall a1,
no_repeats X 1

— ~ (appears_in X a 1)
— no_repeats X (a::1) .

Grading scheme: Credit is was split 2pts for the nil case, 4pts for the cons case. Common deductions: -2
for forgetting to negate the appears_in predicate, -2 for forgetting inductive occurrence of no_repeats
in the cons case, -1 for -4 ill-formed solutions.

(2 points) Complete the definition of and, as it is defined in Logic.v:

Inductive and (A B : Prop) : Prop :=

Answer:

conj : A— B — (and A B).

Grading scheme: 1 point for the constructor, 1 point for its type

(2 points) Complete the definition of or, as it is defined in Logic.v:

Inductive or (A B : Prop) : Prop :=

Answer:
| or_introl : A — or A B

| or_intror : B — or A B.

Grading scheme: 1 point for the constructors, 1 point for their types

(6 points) Write an informal proof (in English) of the proposition VP : Prop, ~(P A ~P).

Answer:

Suppose, for some P, that (P A ~P) holds. Recall that ~P is defined as P — False. Given P and
P — False, we can prove False, i.e. (P A ~P) — False, i.e., ~(P A ~P). Grading scheme: +1
point for demonstrating knowledge of the definition of ~ or correctly beginning a proof by contradiction.

+38 for correct proof outline. +1 point being clear about assumptions. +1 point for being clear about
the nature of the contradiction. -1 or -2 points for bad style / sounding too much like coq.

4



13.

14.

15.

(4 points) Recall the nat-indexed proposition ev from Logic.v:

Inductive ev : nat — Prop :=
| ev_® : ev O
| ev_SS : forall n:nat, evn — ev (S (S n)).

Complete the definition of the following proof object:

Definition ev_plus2 : forall n, ev n — ev (plus 2 n) :=

Answer:

fun (n : nat) =>
fun (E : ev n) =>
ev_SS n E.

Grading scheme: 1 point for ev_SS, 1 point for each function, 1 point for correct application of ev_SS
(6 points) Recall the definition of ex (existential quantification) from Logic.v:

Inductive ex (X : Set) (P : X — Prop) : Prop :=
ex_intro : forall witness:X, P witness — ex X P.
(a) In English, what does the proposition
ex nat (fun n => ev (S n))
mean?

Answer: There is some number whose successor is even.

Grading scheme: 8 points for correct answer, -1 for imprecise language, -1 for claims about “all
nats”

(b) Complete the definition of the following proof object:
Definition p : ex nat (fun n => ev (S n)) :=
Answer:
ex_intro nat (fun n => ev (S n)) 1 (ev_SS 0 ev_0).
Grading scheme: 1 point for ex_intro, I point for the proof witness ev_SS 0 ev_0 (or something

equivalent, 1 point for correct application of ex_intro

(10 points) Recall the definition of the index function:

Fixpoint index (X : Set) (n : nat) (1 : list X) {struct 1} : option X :=
match 1 with

| [J => None
| a :: 1” => if beq_nat n O then Some a else index _ (pred n) 1’
end.

Write an informal proof of the following theorem:

VXnl, length 1l =n — index X (S n) 1 = None.

Answer:
Let a set X and a list 1 be given. We will show, by induction on 1, that length 1 = n implies
index X (S n) 1 = None, for any natural number n. There are two cases to consider:

(a) If1 = nil, we must show index (S n) [] = None. This follows immediately from the definition
of index.



(b) Otherwise, 1 = cons x :: 1’ for some x and 1’, where the induction hypothesis tells us that
length 1’ = n’ => index (S n’) 1 = None for any n’.

Let n be a number such that length 1 = n. We must show index (S n) (x :: 1) = None.
By the definition of index, it is enough to show index n 1’ = None.
But we know that n = length 1 = length (x :: 1) = S (length 1’). So it’s enough to

show index (S (length 1’)) 1’ = None, which follows directly from the induction hypothesis,
picking length 1’ for n'.

Grading scheme: 6 points for general proof structure. Common Errors: -1 minor confusion about
variables or quantification, -2 for style problems, -1 not explaning that n has form S n’ in the inductive
step.



