CIS 500 - Software Foundations Midterm II

Answer key

April 1, 2009

1. (5 points) Recall the definition of equivalence for while programs:
```
Definition cequiv (c1 c2 : com) : Prop :=
    forall (st st':state), (c1 / st - > st') ↔ (c2 / st - > st').
```

Which of the following pairs of programs are equivalent? Write "yes" or "no" for each one. (Where it appears, a is an arbitrary aexp - i.e., you should write "yes" only if the two programs are equivalent for every a.)
(a) $\mathrm{X}::=\mathrm{A} 4$
and
Y : := A2 +++ A2;
X : := Y
Answer: No
(b) $\mathrm{X}::=\mathrm{a}$;

Y : : = a
and
Y ::= a;
$\mathrm{X}::=\mathrm{a}$
Answer: No
(c) while BTrue do ($\mathrm{X}:=$! $\mathrm{X}+++1$)
and
X := ! $\mathrm{X}+++1$
Answer: No
(d) while BTrue do ($\mathrm{X}:=$! $\mathrm{X}+++1$)
and
while BTrue do (X := ! X --- 1)
Answer: Yes
(e) while BFalse do (X := ! $\mathrm{X}+++1$) and
skip
Answer: Yes
2. (5 points) Is this claim...

Claim: Suppose the command c is equivalent to c ; c. Then, for any b, the command while b do c
is equivalent to

```
testif b then c else skip.
```

... true or false? Briefly explain.
Answer: False. If b evaluates to true and c does not change the value of b , then the first expression loops while the second may not (as long as cterminates).
Grading scheme: 1 pt. for "false". 1 pt. for mentioning nontermination. 3 pts for correct counterexample (b evaluates to true and c does not modify b).
3. (5 points) Recall that a program transformation is a function from commands to commands. What does it mean to say that a program transformation is "sound"? (Answer either informally or with a Coq definition.)
Answer:
Informally: A program transformation is sound if c is equivalent to the result of transforming c , for every program c.
Formally:

```
Definition ctrans_sound (ctrans : com }->\mathrm{ com) : Prop :=
    forall (c : com),
        cequiv c (ctrans c).
```

Grading scheme:-1 for variants on "every command produces the same result as its transformed version" (strictly speaking, they may also fail to produce a result). -2 to -5 for more serious mistakes or nonsense.
4. (7 points) Recall the definition of a valid Hoare triple:

```
Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
forall st st',
    c / st - }->\mathrm{ st'
    P st
    | Q st'.
```

Indicate whether or not each of the following Hoare triples is valid by writing either "valid" or "invalid." Where it appears, a is an arbitrary aexp-i.e., you should write "valid" only if the triple is valid for every a.
(a)
\{\{True\}\} $\mathrm{X}::=\mathrm{a}\{\{\mathrm{X}=\mathrm{a}\}\}$
Answer: Invalid
(b) $\quad\{\{\mathrm{X}=1\}\}$
testif (!X === a) then (while BTrue do Y ::= ! X) else ($\mathrm{Y}::=\mathrm{A} 0$)
$\{\{\mathrm{Y}=0\}\}$
Answer: Valid
(c) $\{\{$ True $\}\}$

Y : := AQ; Y ::= A1
$\{\{Y=1\}\}$
Answer: Valid
(d) \{\{False\}\}

X : := A3
$\{\{\mathrm{X}=0\}\}$
Answer: Valid
(e) \quad \{\{True $\}\}$
skip \{\{False\}\}
Answer: Invalid
(f) $\quad\{\{\mathrm{X}=5 \wedge \mathrm{Y}=\mathrm{X}\}\}$
$\mathrm{Z}::=0$; while BNot (!X === AQ) do (Z ::= !Z +++ !Y; X ::= ! X --- 1) $\{\{Z=25\}\}$
Answer: Valid
(g) $\quad\{\{\mathrm{X}=1\}\}$
while BNot (! $\mathrm{X}===\mathrm{A})$ do $\mathrm{X}::=$! $\mathrm{X}+++1$ $\{\{\mathrm{X}=42\}\}$
Answer: Valid
Grading scheme: 1 pt for each
5. (9 points) Give the weakest precondition for each of the following commands. (Please use the informal notation for assertions rather than Coq notation-i.e., write $\mathrm{X}=5$, not fun st $=>$ st $\mathrm{X}=5$.)

$$
\begin{aligned}
& \text { (a) }\{\{?\}\} \quad \mathrm{X}::=\mathrm{A} 5 \quad\{\{\mathrm{X}=5\}\} \\
& \text { Answer: True } \\
& \text { (b) } \quad\{\{?\}\} \quad \mathrm{X}::=\mathrm{AQ} \quad\{\{\mathrm{X}=5\}\} \\
& \text { Answer: False } \\
& \text { (c) } \quad\{\{?\}\} \quad \mathrm{X}::=!\mathrm{X}+++\mathrm{Y} \quad\{\{\mathrm{X}=5\}\} \\
& \text { Answer: } \mathrm{X}+\mathrm{Y}=5 \\
& \text { (d) }\{\{?\}\} \text { while } \mathrm{A} 1 \ll=\text { ! } \mathrm{X} \text { do (X ::= ! } \mathrm{X}---\mathrm{A} 1 ; \mathrm{Y}::=!\mathrm{Y}---\mathrm{A} 1 \text {) }\{\{\mathrm{Y}=5 \text { \} }\} \\
& \text { Answer: Y - X = } 5 \\
& \text { (e) } \quad\{\{?\}\} \text { while }!\mathrm{X}==\mathrm{AO} \text { do } \mathrm{Y}::=\mathrm{A} 1 \quad\{\{\mathrm{Y}=1\}\} \\
& \text { Answer: } \mathrm{X}=0 \vee \mathrm{Y}=1 \\
& \text { (f) }\{\{?\}\} \\
& \text { testif ! } \mathrm{X}===\mathrm{AQ} \\
& \text { then } Y::=!Z \\
& \text { else Y ::= !W } \\
& \{\{\mathrm{Y}=5\}\} \\
& \text { Answer: }(\mathrm{X}=0 \wedge \mathrm{Z}=5) \vee(\mathrm{X}<>0 \wedge \mathrm{~W}=5)
\end{aligned}
$$

Grading scheme: 1.5 points for each
6. (5 points) The notion of weakest precondition has a natural dual : given a precondition and a command, we can ask what is the strongest postcondition of the command with respect to the precondition. Formally, we can define it like this:
Q is the strongest postcondition of c for P if:
(a) $\{\{P\}\}$ c $\{\{Q\}\}$, and
(b) if Q^{\prime} is an assertion such that $\{\{P\}\} c\left\{\left\{Q^{\prime}\right\}\right\}$, then Q st implies Q^{\prime} st, for all states st.

Q is the strongest (most difficult to satisfy) assertion that is guaranteed to hold after c if P holds before.

For example, the strongest postcondition of the command skip with respect to the precondition $Y=1$ is $Y=1$. Similarly, the postcondition in...

```
\(\{\{\mathrm{Y}=\mathrm{y}\}\}\)
        if ! Y === AO then \(X::=A O\) else \(Y::=\) ! \(Y\) *** A2
\(\{\{(\mathrm{Y}=\mathrm{y}=\mathrm{X}=0) \vee(\mathrm{Y}=2 * \mathrm{y} \wedge \mathrm{y}<>0)\}\}\)
```

...is the strongest one.
Complete each of the following Hoare triples with the strongest postcondition for the given command and precondition.
(a)

$$
\{\{\mathrm{Y}=1\}\} \quad \mathrm{X}::=!\mathrm{Y}+++\mathrm{A} 1 \quad\{\{?\}\}
$$

Answer: $\mathrm{X}=2 \wedge \mathrm{Y}=1$
(b) $\quad\{\{$ True $\}\} \quad \mathrm{X}::=\mathrm{A} 5$ \{\{ ? \}\}

Answer: $\mathrm{X}=5$
(c) $\{\{$ True \}\} skip $\{\{$? \}\}

Answer: True
(d) \{\{ True \}\} while BTrue do skip $\{\{$? $\}\}$

Answer: False
(e) $\quad\{\{\mathrm{X}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\}\}$ while BNot (! $\mathrm{X}===\mathrm{A}$) do (Y : : = ! Y +++ A2;
X : : $=$! X --- A1
)
\{\{ ? \} \}
Answer: $\mathrm{X}=0 \wedge \mathrm{Y}=\mathrm{y}+2 * \mathrm{x}$
7. (12 points) The following program performs integer division:

```
div =
    Q ::= AD;
    R ::= ANum x;
    while (ANum y) <<= !R do (
        R ::= !R --- (ANum y);
        Q ::= !Q +++ A1
    )
```

If x and y are numbers, running this program will yield a state where Q is the quotient of x by y and R is the remainder. (We assume that program variables Q and R are defined.)
Fill in the blanks in the following to obtain a correct decorated version of the program:

```
                                    {0<y } =>
                                    { 0=0 ^ x=x ^ 0<y }
    Q ::= AO;
    R ::= ANum x;
    {Q=0 ^ x=x ^ 0<y } =>
    { Q=0 ^ R=x ^ O<y } =>
```



```
while (ANum y <<= !R) do (
            { ___________________________________________}
            {
```

\qquad

```
    R ::= !R --- (ANum y);
```

\qquad

```
    Q ::= !Q +++ A1
```

\qquad
\{
\qquad
$\{x=Q * y+R \wedge R<y\}$

Answer:

```
    { 0<y } =>
    { O=0 ^ x=x ^ O<y }
Q ::= AQ;
R ::= ANum x;
    { Q=0 ^ x=x ^ 0<y }
    { Q=0 ^ R=x ^ 0<y } =>
    { x=Q*y+R }
while (ANum y <<= !R) do (
    { x=Q*y+R ^ y<=R } =>
    {x=(Q+1)*y+(R-y) }
    R ::= !R --- (ANum y);
        {x=(Q+1)*y+R }
        Q ::= !Q +++ A1
            { x=Q*y+R }
)
{ x=Q*y+R ^ ~(y<=R) } =>
{ x=Q*y+R ^ R<y }
```

Grading scheme: -1 for minor errors. -2 for each violation of the rules for forming decorated programs.
8. (4 points) Suppose we change the initial pre-condition in problem 7 from $0<y$ to True (i.e., we allow y to be zero). Does the specification now make an incorrect claim - i.e., is the Hoare triple
\{\{ True \}\} $\operatorname{div}\{\{x=Q * y+R \wedge R<y\}\}$
invalid, or is it valid? Briefly explain your answer.
Answer: The specification remains valid: if y is 0 at the beginning, the program will never terminate and the required condition for validity will hold trivially.
Grading scheme: 2 pts for noting program does not terminate when $y=0$; 2 pts for stating that Hoare triple is valid for nonterminating program.
9. (6 points) Recall the syntax...

```
Inductive com : Set :=
    ...
    | CWhile : bexp }->\mathrm{ com }->\mathrm{ com
```

...and operational semantics of the while...do... construct:

```
Inductive ceval : state }->\mathrm{ com }->\mathrm{ state }->\mathrm{ Prop :=
    | CEWhileEnd : forall b1 st c1,
        beval st b1 = false }
        ceval st (CWhile b1 c1) st
    | CEWhileLoop : forall st st’ st', b1 c1,
        beval st b1 = true }
        ceval st c1 st' }
        ceval st' (CWhile b1 c1) st', }
        ceval st (CWhile b1 c1) st''
```

Suppose we extend the syntax with one more constructor...
| CLoopWhile : com \rightarrow bexp \rightarrow com
...written loop c while b:

```
Notation "'loop c 'while' b" := (CLoopWhile c b).
```

The intended behavior of this construct is almost like that of while...do... except that the condition is checked at the end of the loop body instead of the beginning (so the body always executes at least once). For example,

```
X ::= A1;
loop
    X ::= !X +++ A1
while
    !X <<= A1
```

will leave X with the value 2 .
To define the operational semantics of loop...while... formally, we need to add two more rules to the Inductive declaration of ceval. Write these rules in the space below.
Answer:

```
| CELoopWhileEnd : forall b1 st st' c1,
    ceval st c1 st' }
    beval st' b1 = false }
    ceval st (CLoopWhile c1 b1) st'
| CELoopWhileLoop : forall st st’ st', b1 c1,
    ceval st c1 st' }
    beval st' b1 = true }
    ceval st' (CLoopWhile c1 b1) st', }
    ceval st (CLoopWhile c1 b1) st''
```

Grading scheme: 2 points for rules of the right form with the right conclusion; 2 points for getting the true/false the right way around; 2 points for evaluating the bexp after the command ran instead of before.
10. (6 points) Having extended the language of commands with loop. . . while..., the next thing we want is a Hoare rule for reasoning about programs that use this construct. Recall the rule for while. . . do. . . :

$$
\begin{gathered}
\{\{\mathrm{P} \wedge \mathrm{~b}\}\} \quad \mathrm{c} \quad\{\{\mathrm{P}\}\} \\
\hline\{\{\mathrm{P}\}\} \\
\text { while b do } \mathrm{c} \quad\{\{\mathrm{P} \wedge \sim \mathrm{~b}\}\}
\end{gathered}
$$

Write an analogous rule for loop. . .while....
Answer:

$$
\frac{\{\{\mathrm{P}\}\} \quad \mathrm{c} \quad\{\{\mathrm{P}\}\}}{} \frac{}{\{\{\mathrm{P}\}\}} \text { loop c while b }\{\{\mathrm{P} \wedge \sim \mathrm{~b}\}\}
$$

Grading scheme: -3 for minor errors. 0 for major/multiple errors.
11. (4 points) Recall (from the review session on Monday) the small-step variant of the operational semantics of IMP. The astep and bstep relations (not shown here) are small-step reduction relations for aexps and bexps. The small-step relation for commands is defined as follows:

```
Inductive cstep : state }->\mathrm{ com }->\mathrm{ com }->\mathrm{ state }->\mathrm{ Prop :=
    | CSAssStep : forall st i a a',
        astep st a a' }
        cstep st (CAss i a) (CAss i a') st
    | CSAss : forall st i n,
        cstep st (CAss i (ANum n)) CSkip (extend st i n)
    | CSSeqStep : forall st c1 c1' st' c2,
        cstep st c1 c1' st' }
        cstep st (CSeq c1 c2) (CSeq c1' c2) st'
    | CSSeqFinish : forall st c2,
        cstep st (CSeq CSkip c2) c2 st
    | CSIfTrue : forall st c1 c2,
        cstep st (CIf BTrue c1 c2) c1 st
    | CSIfFalse : forall st c1 c2,
        cstep st (CIf BFalse c1 c2) c2 st
    | CSIfStep : forall st b b' c1 c2,
        bstep st b b’ }
        cstep st (CIf b c1 c2) (CIf b' c1 c2) st
    | CSWhile : forall st b c1,
        cstep st (CWhile b c1) (CIf b (CSeq c1 (CWhile b c1)) CSkip) st.
```

Suppose we extend the syntax of commands with loop...while..., as in the previous two problems. What needs to be added to the definition of cstep?
Answer 1:
| CSLoop : forall st b c1, cstep st (CLoop c1 b) (CSeq c1 (CWhile b c1) st

Answer 2:
| CSLoop : forall st b c1, cstep st (CLoop c1 b) (CSeq c1 (CIf b (CLoop b c1) CSkip)) st

Grading scheme: 1 point for basic syntax, 3 for rule logic.
12. (12 points) Recall the following definitions from Smallstep.v:

```
Inductive tm : Set :=
    | tm_const : nat }->\mathrm{ tm
    | tm_plus : tm }->\textrm{tm}->\textrm{tm}
Inductive value : tm }->\mathrm{ Prop :=
    v_const : forall n, value (tm_const n).
Inductive step : tm }->\mathrm{ tm }->\mathrm{ Prop :=
    | ES_PlusConstConst : forall n1 n2,
            step (tm_plus (tm_const n1) (tm_const n2))
                    (tm_const (plus n1 n2))
    | ES_Plus1 : forall t1 t1' t2,
            (step t1 t1')
        -> step (tm_plus t1 t2)
                    (tm_plus t1' t2)
    | ES_Plus2 : forall v1 t2 t2',
            (value v1)
        (step t2 t2')
        step (tm_plus v1 t2)
                            (tm_plus v1 t2').
```

In class, we discussed the Progress Theorem:
Theorem: If t is a term, then either t is a value or else there exists some term t^{\prime} such that t steps to t^{\prime}.

Write a careful informal proof of this theorem.
Answer:
Proof: By induction on t .

- Suppose $\mathrm{t}=$ tm_const n , then it is a value by v_const.
- If $t=$ tm_plus $t 1$ t2 for some tms $t 1$ and $t 2$, then by the $I H t 1$ and $t 2$ are either values or can take steps under step.
- If t 1 and t 2 are both values, then t can take a step by ES_PlusConstConst.
- If t 1 is a value and t 2 can take a step, then so can t , by rule ES_Plus2.
- Otherwise, t1 can take a step. In this case t steps as well, by rule ES_Plus1.

Grading scheme: 1 point for induction, 2 for the base case, 3 for stating the $I H$ in the inductive case. 6 points for the case analysis, reasoning, and clarity of the inductive case.

