CIS 500 - Software Foundations Midterm II

April 1, 2009

Name:

Email:

	Score
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Total	

Instructions

- This is a closed-book exam: you may not use any books or notes.
- You have 80 minutes to answer all of the questions.
- The exam is worth 80 points. However, questions vary significantly in difficulty, and the point value of a given question is not always exactly proportional to its difficulty. Do not spend too much time on any one question.
- Partial credit will be given. All correct answers are short. The back side of each page may be used as a scratch pad.
- Good luck!

1. (5 points) Recall the definition of equivalence for while programs:
```
Definition cequiv (c1 c2 : com) : Prop :=
    forall (st st':state), (c1 / st -> st') ↔ (c2 / st - > st').
```

Which of the following pairs of programs are equivalent? Write "yes" or "no" for each one. (Where it appears, a is an arbitrary aexp - i.e., you should write "yes" only if the two programs are equivalent for every a.)
(a) $\quad \mathrm{X}::=\mathrm{A} 4$
and
Y : := A2 +++ A2;
X ::= Y
(b) $\mathrm{X}::=\mathrm{a}$;

Y : : = a
and
Y : := a;
$\mathrm{X}::=\mathrm{a}$
(c) while BTrue do ($\mathrm{X}:=$! $\mathrm{X}+++1$) and

X := ! X +++ 1
(d) while BTrue do (X := ! $\mathrm{X}+++$ 1) and
while BTrue do (X := !X --- 1)
(e) while BFalse do (X := ! $\mathrm{X}+++1$) and
skip
2. (5 points) Is this claim...

Claim: Suppose the command c is equivalent to c; c. Then, for any b, the command while b do c
is equivalent to
testif b then celse skip.
... true or false? Briefly explain.
3. (5 points) Recall that a program transformation is a function from commands to commands. What does it mean to say that a program transformation is "sound"? (Answer either informally or with a Coq definition.)
4. (7 points) Recall the definition of a valid Hoare triple:

```
Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
forall st st',
        c / st -\longrightarrow st'
    P st
    | Q st'.
```

Indicate whether or not each of the following Hoare triples is valid by writing either "valid" or "invalid." Where it appears, a is an arbitrary aexp-i.e., you should write "valid" only if the triple is valid for every a.
(a) $\{\{$ True $\}\} \mathrm{X}::=\mathrm{a}\{\{\mathrm{X}=\mathrm{a}\}\}$
(b) $\quad\{\{\mathrm{X}=1\}\}$ testif (!X === a) then (while BTrue do Y ::= ! X) else (Y ::= AQ) $\{\{\mathrm{Y}=0\}\}$
(c) $\{\{$ True $\}\}$

Y ::=A0; Y ::=A1
$\{\{Y=1\}\}$
(d) $\{\{$ False $\}\}$
$\mathrm{X}::=\mathrm{A} 3$
$\{\{\mathrm{X}=0\}\}$
(e) \quad \{\{True $\}\}$
skip
\{\{False\}\}
(f) $\quad\{\{\mathrm{X}=5 \wedge \mathrm{Y}=\mathrm{X}\}\}$

Z ::= 0 ; while BNot (! $\mathrm{X}===\mathrm{AQ}$) do ($\mathrm{Z}::=!\mathrm{Z}+++!\mathrm{Y} ; \mathrm{X}::=$! X --- 1) $\{\{Z=25\}\}$
(g) $\quad\{\{\mathrm{X}=1\}\}$
while BNot (! $\mathrm{X}===\mathrm{A})$ do $\mathrm{X}::=$! $\mathrm{X}+++1$ $\{\{\mathrm{X}=42\}\}$
5. (9 points) Give the weakest precondition for each of the following commands. (Please use the informal notation for assertions rather than Coq notation-i.e., write $\mathrm{X}=5$, not fun st $=>$ st $\mathrm{X}=5$.)
(a) $\quad\{\{?\}\} \quad \mathrm{X}::=\mathrm{A} 5 \quad\{\{\mathrm{X}=5\}\}$
(b) $\quad\{\{?\}\} \quad \mathrm{X}::=\mathrm{AO} \quad\{\{\mathrm{X}=5\}\}$
(c) $\quad\{\{?\}\} \quad \mathrm{X}::=!\mathrm{X}+++$! $\mathrm{Y} \quad\{\{\mathrm{X}=5\}\}$
(d)
\{\{ ? \}\} while A1 <<= ! X do ($\mathrm{X}::=$! $\mathrm{X}---\mathrm{A} 1 ; \mathrm{Y}::=$! Y---A1) $\quad\{\{\mathrm{Y}=5$ \}\}
(e) $\{\{?\}\}$ while $!\mathrm{X}===\mathrm{AO}$ do $\mathrm{Y}::=\mathrm{A} 1\{\{\mathrm{Y}=1\}\}$
(f)

```
{{ ? }}
    testif !X === AQ
        then Y ::= !Z
        else Y ::= !W
    {{ Y = 5 }}
```

6. (5 points) The notion of weakest precondition has a natural dual : given a precondition and a command, we can ask what is the strongest postcondition of the command with respect to the precondition. Formally, we can define it like this:

Q is the strongest postcondition of c for P if:
(a) $\{\{P\}\} \subset\{\{Q\}\}$, and
(b) if Q^{\prime} is an assertion such that $\{\{P\}\} \subset\left\{\left\{Q^{\prime}\right\}\right\}$, then Q st implies $Q^{\prime} s t$, for all states st.

Q is the strongest (most difficult to satisfy) assertion that is guaranteed to hold after C if P holds before.

For example, the strongest postcondition of the command skip with respect to the precondition $Y=1$ is $Y=1$. Similarly, the postcondition in...

```
{{ Y = y }}
    if !Y === AO then X ::= AO else Y ::= !Y *** A2
{{(Y = y = X = 0) \vee (Y = 2* y ^ y <> 0) }}
```

...is the strongest one.
Complete each of the following Hoare triples with the strongest postcondition for the given command and precondition.
(a)
$\{\{\mathrm{Y}=1\}\} \quad \mathrm{X}::=$! $\mathrm{Y}+++\mathrm{A} 1 \quad\{\{?\}\}$
(b)
\{\{ True \}\} $\mathrm{X}::=\mathrm{A} 5$ \{\{ ? \}\}
(c) $\{\{$ True $\}\}$ skip $\{\{$? \}\}
(d) $\{\{$ True \}\} while BTrue do skip $\{\{$? \}\}
(e)

```
{{ X = x ^ Y = y }}
    while BNot (!X === AQ) do (
        Y ::= !Y +++ A2;
        X ::= !X --- A1
    )
{{ ? }}
```

7. (12 points) The following program performs integer division:
```
div =
Q ::= AQ;
R ::= ANum x;
while (ANum y) <<= !R do (
        R ::= !R --- (ANum y);
        Q ::= !Q +++ A1
    )
```

If x and y are numbers, running this program will yield a state where Q is the quotient of x by y and R is the remainder. (We assume that program variables Q and R are defined.)
Fill in the blanks in the following to obtain a correct decorated version of the program:
\{ $0<y$ \} $=>$
$\{0=0 \wedge x=x \wedge 0<y\}$
Q : := AO;
$\{\mathrm{Q}=\mathrm{Q} \wedge \mathrm{x}=\mathrm{x} \wedge 0<\mathrm{y}\}=>$
$\{\mathrm{Q}=\mathrm{Q} \wedge \mathrm{R}=\mathrm{x} \wedge 0<\mathrm{y}\}=>$

while (ANum y <<= ! R) do (
\qquad
\{ \qquad \}
R ::= !R --- (ANum y);

Q ::= !Q +++ A1
\qquad
)

8. (4 points) Suppose we change the initial pre-condition in problem 7 from $0<y$ to True (i.e., we allow y to be zero). Does the specification now make an incorrect claim - i.e., is the Hoare triple
$\{\{$ True $\}\} \operatorname{div}\{\{x=Q * y+R \wedge R<y\}\}$
invalid, or is it valid? Briefly explain your answer.
9. (6 points) Recall the syntax...

```
Inductive com : Set :=
    ..
    | CWhile : bexp }->\mathrm{ com }->\mathrm{ com
```

...and operational semantics of the while...do... construct:

```
Inductive ceval : state }->\mathrm{ com }->\mathrm{ state }->\mathrm{ Prop :=
    | CEWhileEnd : forall b1 st c1,
                beval st b1 = false }
                ceval st (CWhile b1 c1) st
    | CEWhileLoop : forall st st' st', b1 c1,
                beval st b1 = true }
            ceval st c1 st' }
            ceval st' (CWhile b1 c1) st', }
            ceval st (CWhile b1 c1) st',
```

Suppose we extend the syntax with one more constructor...
| CLoopWhile : com \rightarrow bexp \rightarrow com
...written loop c while b:
Notation "'loop c 'while’ b" := (CLoopWhile c b).
The intended behavior of this construct is almost like that of while...do... except that the condition is checked at the end of the loop body instead of the beginning (so the body always executes at least once). For example,

```
\(\mathrm{X}::=\mathrm{A} 1\);
loop
    X : : \(=\) ! \(\mathrm{X}+++\mathrm{A} 1\)
while
    ! \(\mathrm{X} \ll=\mathrm{A} 1\)
```

will leave X with the value 2 .
To define the operational semantics of loop...while... formally, we need to add two more rules to the Inductive declaration of ceval. Write these rules in the space below.
10. (6 points) Having extended the language of commands with loop...while..., the next thing we want is a Hoare rule for reasoning about programs that use this construct. Recall the rule for while...do....

$$
\frac{\{\{\mathrm{P} \wedge \mathrm{~b}\}\} \quad \mathrm{c} \quad\{\{\mathrm{P}\}\}}{} \frac{}{\{\{\mathrm{P}\}\}} \text { while b do c } \quad\{\{\mathrm{P} \wedge \sim \mathrm{~b}\}\}
$$

Write an analogous rule for loop...while....
11. (4 points) Recall (from the review session on Monday) the small-step variant of the operational semantics of IMP. The astep and bstep relations (not shown here) are small-step reduction relations for aexps and bexps. The small-step relation for commands is defined as follows:

```
Inductive cstep : state }->\mathrm{ com }->\mathrm{ com }->\mathrm{ state }->\mathrm{ Prop :=
    | CSAssStep : forall st i a a',
        astep st a a' }
        cstep st (CAss i a) (CAss i a’) st
    | CSAss : forall st i n,
        cstep st (CAss i (ANum n)) CSkip (extend st i n)
    | CSSeqStep : forall st c1 c1' st' c2,
        cstep st c1 c1' st' }
        cstep st (CSeq c1 c2) (CSeq c1' c2) st'
    | CSSeqFinish : forall st c2,
        cstep st (CSeq CSkip c2) c2 st
    | CSIfTrue : forall st c1 c2,
        cstep st (CIf BTrue c1 c2) c1 st
    | CSIfFalse : forall st c1 c2,
        cstep st (CIf BFalse c1 c2) c2 st
    | CSIfStep : forall st b b' c1 c2,
        bstep st b b' }
        cstep st (CIf b c1 c2) (CIf b' c1 c2) st
    | CSWhile : forall st b c1,
        cstep st (CWhile b c1) (CIf b (CSeq c1 (CWhile b c1)) CSkip) st.
```

Suppose we extend the syntax of commands with loop...while..., as in the previous two problems. What needs to be added to the definition of cstep?
12. (12 points) Recall the following definitions from Smallstep.v:

```
Inductive tm : Set :=
        | tm_const : nat }->\mathrm{ tm
        | tm_plus : tm }->\textrm{tm}->\textrm{tm}
    Inductive value : tm }->\mathrm{ Prop :=
        v_const : forall n, value (tm_const n).
    Inductive step : tm }->\mathrm{ tm }->\mathrm{ Prop :=
        | ES_PlusConstConst : forall n1 n2,
            step (tm_plus (tm_const n1) (tm_const n2))
                        (tm_const (plus n1 n2))
        | ES_Plus1 : forall t1 t1' t2,
            (step t1 t1')
            -> step (tm_plus t1 t2)
                    (tm_plus t1' t2)
    | ES_Plus2 : forall v1 t2 t2',
                (value v1)
                (step t2 t2')
                step (tm_plus v1 t2)
                    (tm_plus v1 t2').
```

In class, we discussed the Progress Theorem:
Theorem: If t is a term, then either t is a value or else there exists some term t^{\prime} such that t steps to t^{\prime}.

Write a careful informal proof of this theorem.

